• Title/Summary/Keyword: LNT Catalyst

Search Result 26, Processing Time 0.022 seconds

NH3 Generation Characteristics of a LNT Catalyst Downstream (LNT 촉매 후단의 NH3 생성 특성)

  • Seo, Choong-Kil
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • As diesel engines have high power and good fuel economy on top of less $CO_2$ emissions, their market shares are increasing not only in commercial vehicles but also in passenger cars. LNT, urea-SCR and combination of them have been developed for after-treatment of the exhaust gas to reduce NOx on diesel vehicles. The aim of this study is to investigate the $NH_3$ generation characteristics of LNT catalyst downstream. It was found from the experiments of the LNT catalyst that $H_2$ was useful as a reductant in SCR catalyst because it can enhance the de-NOx performance and improve $NH_3$ selectivity. The $NH_3$ generation of the LNT, when hydrothermally aged at $900^{\circ}C$ for 18 hr, increased to about 90ppm at $300^{\circ}C$ due to Pt sintering and Ba agglomeration. LNT catalyst was most sulfur poisoning at $500^{\circ}C$. The $NH_3$ slip increased due to the reduction of residence time according to SV increase.

Characteristics of Simultaneous Removal of NOx and PM over a Hybrid System of LNT/DPF + SCR/DPF in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 LNT/DPF + SCR/DPF 하이브리드 시스템의 NOx 및 PM 동시저감 특성)

  • Kang, Wooseok;Park, Su Han;Choi, Byungchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-160
    • /
    • 2016
  • The market demand for diesel engine tends to increase in general passenger cars as well as commercial vehicles because of its advantages. However, to meet the vehicle emissions regulation which will be more stringent in the future, it is necessary to plurally apply all after-treatment technologies such as diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), lean NOx trap (LNT) and selective catalytic reduction (SCR), and so on. Accordingly, the exhaust after-treatment system for diesel vehicle requires the technology of minimizing the numbers of catalysts by integrating every individual catalysts. The purposes of this study is to develop hybrid exhaust after-treatment device system which simultaneously uses LNT/DPF and SCR/DPF catalyst concurrently reducing NOx and particulate matter (PM). As the results, the hybrid system with $NH_3$ generated at LNT/DPF working as a reducing agent of SCR/DPF catalyst, improving NOx conversion rate, was found to be more excellent in de-NOx performance than that in LNT/DPF alone system.

Volume Optimization of a Combined System of LNT and SCR Catalysts Considering Economic Feasibility and De-NOx Performance

  • Seo, Choong-Kil;Choi, Byung-Chul;Kim, Young-Kwon
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The purpose of the study is carried out volume optimization of a combined system consisting of an LNT and SCR catalysts from the standpoint of its economic feasibility and de-NOx performance. Under the rich air-fuel ratio conditions for 5s (${\Phi}$=1.1), CO, $H_2$ and THC were generated at levels of 4%, 1.2% and $110ppmC_1$, respectively. The NOx conversion of the 1+1 combination was 5% lower than that of the 1.5+0.5 combination, however the reduced volume of the LNT catalyst decreased the total cost by about 6%. Therefore, the optimal volume ratio of the LNT and SCR catalysts was found to be the 1+1 catalyst combination, which has the highest total score in the terms of an economic feasibility and the NOx performance.

A Study on NOx Reduction Characteristics of LNT Catalyst with Fuel Injection Control in Light-duty Diesel Engine (승용디젤엔진의 연료분사 제어를 통한 LNT 촉매의 NOx 저감 특성에 관한 연구)

  • Hwang, Seung-Kwon;Ko, A-Hyun;Yoon, Joo-Wung;Myung, Cha-Lee;Park, Sim-Soo;Kim, Eun-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.150-155
    • /
    • 2012
  • Lean NOx Trap (LNT) catalysts are capable of reducing exhaust NOx emissions from diesel engines. LNT stores NOx in lean condition and exhausts N2 by reducing NOx in rich condition. NOx reduction characteristic of LNT catalysts using throttle position sensor and fuel injection timing control for light-duty diesel engine was investigated. In contrast to SCR system, LNT catalyst uses diesel fuel in resuctant. Also if the concentration of reductant is exceeded, excessive amount of reductant will slip throughout LNT and cause another emission problem. Thus LNT regeneration with precise engine control established that can make higher NOx conversion efficiency and lower fuel penalty, prevent another emission problem. NOx and reductant concentration were measured by the NOx sensor and Mexa7100D equipped inlet and outlet of catalyst. As a result of engine test, regeneration strategy has reached high of 77.8% NOx conversion efficiency according to engine operation condition. Moreover, we have proved that it is possible to use regeneration strategy of LNT within 5% fuel penalty.

Improvement in Reduction Performance of LNT-Catalyst System with Micro-Reformer in Diesel Engine (연료 개질장치의 적용에 따른 디젤 LNT 환원성능 개선 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.689-696
    • /
    • 2010
  • The Because of its high thermal efficiency, the direct injection (DI) diesel engine has emerged as a promising potential candidate in the field of transportation. However, the amount of nitrogen oxides ($NO_x$) increases in the local high-temperature regions and that of particulate matter (PM) increases in the diffusion flame region during diesel combustion. In the de-$NO_x$ system the Lean $NO_x$ Trap (LNT) catalyst is used, which absorbs $NO_x$ under lean exhaust gas conditions and releases it in rich conditions. This technology can provide a high $NO_x$-conversion efficiency, but the right amount of reducing agent should be supplied to the catalytic converter at the right time. In this research, the emission characteristics of a diesel engine equipped with a micro-reformer that acts as a reductants-supplying equipment were investigated using an LNT system, and the effects of the exhaust-gas temperature were also studied.

Comparison of the LNT Regeneration Methods in 2.2L Common Rail Direct Injection Diesel Engine (2.2L 직분사 디젤 엔진에서 LNT 촉매 재생을 위한 환원제 분사 방법 비교)

  • Nam, Chungwoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.169-177
    • /
    • 2015
  • In this study we investigated the regeneration methods for the lean $NO_x$ trap (LNT) catalyst in a 2.2L direct injection diesel engine. The regeneration methods were 1) in-cylinder post fuel injection and 2) external fuel injection strategy. The in-cylinder post fuel injection method uses in-cylinder injectors with the addition of the post fuel injection to supply enough reductants such as CO, $H_2$, THC. The external fuel injection method was enabled by installing a fuel injector with a wide spray angle before the LNT catalyst. Through the engine experiment, the $NO_x$ conversion efficiency, the amount of reductant exhaust gases, fuel consumption, and temperature behavior in the LNT catalyst were evaluated and compared for the two regeneration methods.

Study on the Optimal Injection Condition for HC-LNT Catalyst System for Diesel Engines with a Gasoline PFI Type Injector (가솔린 인젝터를 디젤엔진용 HC-LNT 촉매에 적용하기 위한 최적 분사 조건에 관한 연구)

  • Oh, Jung-Mo;Mun, Woong-Ki;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • NOx (Nitrogen Oxide) reduction system periodically needs a rich or stoichiometric operating condition to reduce NOx. A new method that optimizes the control of external HC injection into a diesel exhaust pipe for HC-type LNT (Lean NOx Trap) catalyst system has been developed. In this paper, these catalysts are called HC-LNT catalysts. The concentration and amount of HC can be controlled by controlling the external injection. In this study, we investigated the relationship between the spray behavior of hydrocarbons injected into the transparent exhaust pipe and NOx reduction characteristics. From the results of this experiment, we obtained useful information about the optimum injection and position of HC injector to the exhaust pipe. Further, we obtained useful information about the optimal injection condition for an HC-LNT catalyst system with a gasoline PFI (port fuel injection) typeinjector.

Performance of LNT Catalyst according to the Supply Condition of Hydrogen Reductants for Diesel Engine (디젤엔진에서 수소 환원제 공급 조건에 따른 LNT 촉매 성능)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.142-148
    • /
    • 2009
  • The direct injection(DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides(NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing a suitable after treatment device has been increased. NOx absorbing catalysts are based on the concept of NOx storage and release making it possible to reduce NOx emission in net oxidizing gas conditions. This De-NOx system, called the LNT(Lean NOx Trap) catalyst, absorbs NOx in lean exhaust gas conditions and release it in rich conditions. This technology can give high NOx conversion efficiency, but the right amount of reducing agent should be supplied into the catalytic converter at the right time. In this research, a performance characteristics of LNT with a hydrogen enriched gas as a reductant was examined and strategies of controlling the injection and rich exhaust gas condition were studied. The NOx reduction efficiency is closely connected to the injection timing and duration of reductant. LNT can reduce NOx efficiently with only 1 % fuel penalty.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

NOx Conversion Characteristics of HC-LNT System according to Secondary Injection Conditions in a Diesel Engine (디젤엔진에서 2차 분사조건에 따른 HC-LNT 시스템의 NOx 변환 특성)

  • Park, Jin-Kyu;Oh, Jung-Mo;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.130-137
    • /
    • 2012
  • Automotive engines need strategies to satisfy with the emission regulations in terms of PM and NOx. HC-LNT (Hydrocarbon-Lean NOx Trap) with secondary injection system is considered as more practical technology in order to cope with emission regulations. The HC-LNT system, which is using diesel fuel itself as a reducing agent, absorbs NOx in lean exhaust gas condition and releases NOx in rich exhaust gas conditions. In this system, inappropriate amounts of reducing agent will slip through the LNT without the profits of conversion and cause additional emission problems. Therefore, the suitable amount of reducing agent should be supplied into the catalytic converter. In this research, engine emission test was conducted to optimize injection quantity at the various engine test conditions. Different exhaust layouts and catalyst shapes have been studied and extension unit which makes better uniformity of exhaust gas was used for HC-LNT system. From this results, the effect of secondary injection conditions on NOx conversion characteristics of HC-LNT was clarified.