• Title/Summary/Keyword: LNG structure

Search Result 188, Processing Time 0.022 seconds

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

A Study on Development of Structural Analysis Program og LNG Pump Tower (LNG 운반선용 펌프타워의 구조해석 프로그램 개발에 관한 연구)

  • Lee Kang-Su;Son Choong-Yul;Won Jing-Bum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.881-888
    • /
    • 2006
  • The purpose of this study is to develop a structural. analysis system of LNG pump tower structure. The system affords to build optimized finite element model and procedure of the pump tower structure. The pump tower structure is one of the most important components of LNG (liquefied natural gas) carriers. The pump tower structure is subject to sloshing load of LNG induced by ship motion depending on filling ratio. Three types of loading components, which are thermal, inertia and self-gravity are considered in the analysis. All these design and analysis procedures are embedded in to the analysis system successfully.

  • PDF

Dynamic Experiment for Mode Shape of Pilot LNG Storage Tank (Pilot LNG저장탱크의 모드 형상 파악을 위한 동특성 실험)

  • Lee Kangwon;Hong Seongho;Kim Young Kyun;Kim Ji Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.18-23
    • /
    • 2003
  • The demand of LNG in Korea has dramatically increased since it was first imported in 1986. Thus, more LNG storage tanks are required to meet the growing consumption of LNG. However the design, construction, and analysis of LNG storage facility need highly advanced technology compared to the general structures due to the fluid-structure interaction and the low temperature of LNG. Recently Korea Gas Corporation(KOGAS) constructed a pilot LNG storage tank, and it is in operation to develop and accumulate the core technology. As a part of those objects, the fundamental dynamic test for the pilot tank were performed. For this study, dynamic test were carried out and the dynamic characteristics of the pilot tank were verified and analyzed.

  • PDF

Evaluation of sloshing Resistance Performance of LNG Carrier Insulation System by Fluid-Structure Interaction Analysis (유체-구조 연성 해석을 이용한 LNG 운반선 방열시스템의 내슬로싱 성능 평가)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.557-560
    • /
    • 2011
  • In the present paper, the sloshing resistance performance of an LNG carrier insulation system is evaluated by fluid-structure interaction (FSI) analysis. For this analysis, the arbitrary Lagrangian Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG motion of a KC-1 type LNG carrier cargo tank. In addition, the global-local analysis method is introduced to reduce computational time and cost. The global model is built from shell elements to reduce the sloshing analysis time. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  • PDF

Optimized Design of Roof Structure in LNG Storage Tank (LNG저장탱크의 지붕 구조물에 관한 최적설계 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.36-43
    • /
    • 2005
  • In this paper, the optimized design of a roof structure f3r a LNG outer tank has been analyzed using the Taguchi design method. This method may efficiently optimize the design parameters of a LNG roof structure in terms of H beam and L beam structures, and a thickness of a concrete structure. The FEM computed results indicate that the thickness of a concrete structure is a dominant factor of a roof structure design. The H and L beam structures do not affect a maximum stress and deformation of a reinfarced roof structure. This means that H and L beam structures only support a dead weight of a concrete roof during a consolidation of a reinforced concrete. Based on the computed results by the Taguchi design method, the number of beams and thickness of a reinforced concrete are given as H=30, L=7, and t=1.2m.

  • PDF

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

An Assessment of Structure Safety for Basic Insulation Panel of KC-1 LNG Cargo Containment system under Sloshing Load (슬로싱 하중을 받는 한국형 LNG선 화물창(KC-1)의 보냉 판넬에 대한 구조 안전성 평가)

  • Jin, Kyo-Kook;Oh, Byung-Taek;Kim, Young-Kyun;Yoon, Ihn-Soo;Yang, Young-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of the development of KC-1 LNG cargo containment system is reduction in royalty and increase in competitiveness of shipbuilding industry. An assessment of structure safety for LNG cargo containment system under sloshing load due to ship motion has become an important design element. The ideal way is to implement fully interaction of the fluid domain and the cargo containment system. However the irregular sloshing pressure were idealized in the form of a triangular wave for safety assessment because the fluid- structure interaction analysis is taken the extensive computation time and difficult to ensure the accuracy of the results. In this study, the sloshing load was assumed to be a triangular wave with a maximum pressure of 10 bar during 15/1000 seconds. In the analytic results, the basic insulation panel of KC-1 LNG cargo containment system was assessed to be structurally safe for sloshing load.

A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers (구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.

On the Leakage Safety Analysis of Membrane LNG Storage Tank With Thermal Resistance Effects (열저항 효과를 고려한 멤브레인식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y.G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the FE analysis has been presented for the leakage safety of the membrane LNG storage tank based on the thermal resistance effects between the insulation panel and prestressed concrete structure. The FEM calculated results show that the leakage safety of plywood and polyurethane materials does not guarantee any more due to a strength failure of the insulation structure. But the PC structure of outer tank may delay leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that the membrane LNG storage tank may be safe because of the stiffness of the outer tank.

  • PDF