• Title/Summary/Keyword: LNG insulation system

Search Result 55, Processing Time 0.035 seconds

Numerical Analysis on the Stress and Deformation Characteristics of LNG Membrane Storage Tank System with Corner Protection (코너프로텍션 설치에 따른 멤브레인 LNG 저장탱크 시스템의 응력 및 변형거동 특성에 관한 수치해석)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.9-14
    • /
    • 2009
  • In this study, the stress and deformation characteristics of corner protection in which is fabricated in an insulation area have been analyzed using a finite element method. The proposed corner protection may increase the strength and leakage safeties of conventional LNG storage system. The stress and deformation of LNG storage tank system are computed for an insulation panel box, membrane inner tank, and prestressed concrete outer tank. The FEM computed results indicate that the stress and displacement of new membrane LNG tank system with a corner protection between an inner tank and an outer tank are reduced in comparison to those of a conventional membrane LNG tank. This is explained that the strength safety of LNG membrane tank system may be increased due to a strength stiffness of a corner protection.

  • PDF

On the Leakage Safety Analysis of Membrane LNG Storage Tank With Thermal Resistance Effects (열저항 효과를 고려한 멤브레인식 LNG 저장탱크의 누설 안전성에 관한 연구)

  • Kim C.K.;Cho S.H.;Suh H.S.;Hong S.H.;Lee S.R.;Kim Y.G.;Kwon B.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.4 s.25
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the FE analysis has been presented for the leakage safety of the membrane LNG storage tank based on the thermal resistance effects between the insulation panel and prestressed concrete structure. The FEM calculated results show that the leakage safety of plywood and polyurethane materials does not guarantee any more due to a strength failure of the insulation structure. But the PC structure of outer tank may delay leaked LNG of 10 days even though the inner tank and insulation structure are simultaneously failed. This means that the membrane LNG storage tank may be safe because of the stiffness of the outer tank.

  • PDF

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

An Effect of Surface Dashpot for KC-1 Basic Insulation System Under Sloshing Loads (슬로싱 하중을 받는 KC-1 단열시스템의 표면 완충 효과)

  • Jin, Kyo Kook;Yoon, Ihn Soo;Yang, Young Chul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Sloshing of LNG cargo can cause high impact loads on the supporting and containing structures. This is particularly critical for membrane-type tanks since these will have flat surfaces and corner regions which can lead to increased peak pressures for sloshing impacts. The membrane-type containment system is much more flexible compared to the steel hull structure. As a result, fluid-structure interaction plays an important role in the structural analysis of the containment system under sloshing load. This study is based on the direct calculation method of applying sloshing loads to the KC-1 basic insulation system using finite element analysis. The structural analysis of KC-1 basic insulation system considers the dashpot as fluid-structure interaction between liquid cargo and the LNG containment system. The maximum stress of the polyurethane form for KC-1 insulation system is 1.5 times lower than one without dashpot.

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

Compression Dynamic Performance of Glass Bubble/Epoxy Resin Adhesion (글라스버블/에폭시 수지 접착부의 극저온 압축 동적 성능)

  • Bae, Jin-Ho;Hwang, Byeong-Kwan;Lee, Jae-Myung
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.90-95
    • /
    • 2019
  • Sloshing impact loads on liquefied natural gas (LNG) carr iers are the main issue of damage to the insulation system in LNG cargo containment system (LNG CCS). The damage to the insulation system would be fatal in maintaining a temperature-savings environment in LNG CCS. The typical method is to enhance the insulation materials that can maintain a constant cryogenic temperature. Insulation materials consist of polyurethane foam and plywood, an adhesive for bonding these two materials. This study intends to improve the absorption energy of the material when the impact load is applied by creating a glass bubble/epoxy composite resin as part of the insulation. The experimental scenarios consider the effect of temperature ($20^{\circ}C$, $-163^{\circ}C$), glass bubble weight fraction in epoxy resin through free fall experiments. Experiments have shown that if the glass bubble additive reaches 20 wt.%, the cryogenic absorption energy is a maximum performance and that 0 wt.% has a maximum ambient absorption energy. However, the agglomeration has been occurred due to deterioration of the stirring performance if weight fraction was 20 wt.% and the result of 0 wt.% have been revealed that ambient absorption energy is significantly lower.

Experimental Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System (멤브레인 LNG선 방열시스템 동적강도 실험적 특성평가)

  • Lee, Jun-Hwan;Choi, Woo-Chul;Kim, Myung-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Choe, Ick-Hung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.296-304
    • /
    • 2007
  • The objective of this paper is to investigate the dynamic strength characteristics of LNG carriers cargo containment system under impact loads experimentally. The material properties were experimentally obtained for individual components of MARK III insulation system. A series of impact tests was performed using a custom-built drop experiment facility as varying heights and weights of the drop object. Crack initiation and propagation were measured during the cyclic dry drop experiment. The quantitative relationship between impact load and crack initiation as well as the cycle number and crack propagation were reported.

Sloshing Impact Response Analysis for Insulation System of LNG CCS Considering Elastic Support Effects of Hull Structures (선체구조의 탄성지지 효과를 고려한 LNG 운반선 방열구조의 슬로싱 충격응답 해석법에 관한 연구)

  • Nho, In Sik;Ki, Min-Seok;Kim, Sung-Chan;Lee, Jang Hyun;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • The sloshing pressure acting on a membrane-type LNG CCS is a typical irregular impact load, and the structural response of a tank system induced by sloshing also shows very complex behavior, including fluid structure interaction. Therefore, it is not easy to accurately estimate the sloshing impact pressures and resulting structural response. Moreover, a huge time consuming process to deal with the enormous pressure data obtained during a model tank test and the following structural analysis would be inevitable. To reduce the computation time for structural analysis, in this study, a rational structural modeling strategy was considered, and a simplified scheme to analyze the dynamic structural responses of an LNG CCS was introduced, which was based on the concept of the linear combination of the triangular response functions obtained by a transient response analysis of structures under unit triangular impact pressure. A structural analysis of a real Mark III membrane type insulation system under the sloshing impact pressure time histories obtained by model tests was performed using the various proposed structural models and simplified analysis scheme. The results were investigated in detail, including the elastic support effects of the hull structure.

Damping Effect of Reinforced Polyurethane Foam under Various Temperatures

  • Lee, Tak-Kee;Kim, Myung-Hyun;Rim, Chae-Whan;Chun, Min-Sung;Suh, Yong-Suk
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.230-235
    • /
    • 2011
  • Reinforced polyurethane foam (RPUF) is one of the important materials of Mark III type insulation systems used in liquefied natural gas (LNG) cargo containment systems. However, RPUF is the most difficult material to use with regard to its safety assessment, because there is little public and reliable data on its mechanical properties, and even some public data show relatively large differences. In this study, to investigate the structural response of the system under compressive loads such as sloshing action, time-dependent characteristics of RPUF were examined. A series of compressive load tests of the insulation system including RPUF under various temperature conditions was carried out using specimens with rectangular section. As a result, the relationship between deformation of RPUF and time is linear and dependent on the loading rate, so the concept of strain rate could be applied to the analysis of the insulation system. Also, we found that the spring constant tends to converge to a value as the loading rate increases and that the convergence level is dependent on temperature.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.