• Title/Summary/Keyword: LNG Spot Rate

Search Result 2, Processing Time 0.017 seconds

Forecasting LNG Freight rate with Artificial Neural Networks

  • Lim, Sangseop;Ahn, Young-Joong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.187-194
    • /
    • 2022
  • LNG is known as the transitional energy source for the future eco-friendly, attracting enormous market attention due to global eco-friendly regulations, Covid-19 Pandemic, Russia-Ukraine War. In addition, since new LNG suppliers such as the U.S. and Australia are also diversifying, the LNG spot market is expected to grow. On the other hand, research on the LNG transportation market has been marginalized. Therefore, this study attempted to predict short-term LNG 160K spot rates and compared the prediction performance between artificial neural networks and the ARIMA model. As a result of this paper, while it was difficult to determine the superiority and superiority of ARIMA and artificial neural networks, considering the relative free of ANN's contraints, we confirmed the feasibility of ANN in LNG 160K spot rate prediction. This study has academic significance as the first attempt to apply an artificial neural network to forecasting LNG 160K spot rates and are expected to contribute significantly in practice in that they can improve the quality of short-term investment decisions by market participants by increasing the accuracy of short-term prediction.

Forecasting Spot Freight Rate in LNG Market (LNG 운송시장의 스팟운임 예측 연구)

  • Lim, Sangseop;Kim, Seok-Hun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.325-326
    • /
    • 2021
  • LNG는 환경규제에 따라 화석에너지에서 친환경 재생에너지로 전환되는데 중요한 역할을 하는 에너지원이다. UN산하 세계해사기구(IMO)의 MARPOL협약에 따라 선박 황산화물 배출가스규제로 LNG추진 선박에 대한 수요가 증가되고 있을 뿐만 아니라 미국의 쉐일혁명으로 LNG를 수출함에 따라 공급의 변화가 급격하게 이뤄지고 있다. 과거 국가 주도의 프로젝트 성격이 강한 LNG 운송시장은 장기정기용선계약이 대부분이었으나 수요와 공급시장의 급격한 변화로 스팟시장의 중요성이 커지고 있다. 따라서 본 논문은 LNG 운송시장에서 시장참여자들의 스팟거래에 합리적인 의사결정이 이뤄지도록 과학적인 예측방법을 제시하고자 한다. LNG 스팟운임 예측에 기계학습모델 중 인공신경망 모델을 적용할 것이며 기존의 시계열분석 방법인 ARIMA모델과 비교하여 본문에서 제시된 모델의 예측성능의 우수성을 확인하였다. 본 논문은 LNG 스팟운임을 다룬 최초의 연구로서 학문적인 차별성이 기대된다.

  • PDF