• Title/Summary/Keyword: LNG Process

Search Result 273, Processing Time 0.027 seconds

Performance Simulation of BOG Reliquefaction System for Dual Fuel Engine of LNG Carrier (LNG 선박 Dual Fuel 엔진용 BOG 재액화 시스템의 성능 시뮬레이션)

  • Lee, Sang-Hoon;Shin, You-Hwan;Lee, Yoon-Pyo;Yoo, Ho-Seon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.148-153
    • /
    • 2008
  • As the oil price is dramatically jumping up, the consumption of LNG is rapidly expanding and the size of LNG carriers becomes bigger. For LNG ships, the application of DF (Dual-Fuel) engines gradually increases because of high efficiency, which alternatively use diesel or BOG (Boil-Off Gas) from cargo tank as a fuel. The surplus BOG from LNG cargo tank should be exhausted by GCU or liquefied through the BOG reliquefaction system and returned back. This study focused into its operational characteristics through the process simulation using HYSYS and discussed details on the influence of the variations of some operational parameters such as a distribution ratio by the change of fuel mass flow into the DF engine.

  • PDF

A Study on the Standard for the Safety Zone in the Domestic LNG TTS Bunkering (국내 LNG TTS 벙커링 시 안전구역 기준에 관한 연구)

  • Park, Sung-In;Roh, Jae Seung;Park, Jaehee;Park, Kyoungmin;Shin, Dongkyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.323-329
    • /
    • 2022
  • This paper suggests an example guideline of a safety zone layout for the domestic LNG Truck-To-Ship (TTS) bunkering. The safety zone is one of the controlled area in LNG bunkering and its layout is required as a fundamental safety barrier. While the international standard provides a layout methodology of the safety zone, its detail application is not user-friendly and only possible with a level of the process engineering. In the domestic case, the enforcement regulations are applied for LNG bunkering but the safety zone is not properly defined for TTS operation. Considerations are made for the intuitive approach of the safety zone layout and an example guideline is suggested for application in the domestic TTS bunkering. A technical background of the guideline is described and its applicability is demonstrated with regard to the characteristics of TTS bunkering. The findings of the study are summarized in association with a practical layout of the safety zone, contributing to the safety culture in the domestic LNG bunkering.

Case Study for Development of Maintenance System for Equipment of LNG-FPSO Topside (LNG-FPSO Topside 장비를 위한 보전시스템 개발을 위한 사례 연구)

  • Lee, Soon-Sup;Kim, Jong-Wang
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • A maintenance system for an offshore plant uses an optimal maintenance method, process, and period based on operation information data and economic evaluation techniques. Maintenance is performed after one or more indicators show that equipment is going to fail or that equipment performance is deteriorating. A maintenance system is based on the use of real-time data to prioritize and optimize the LNG-FPSO topside equipment resources.

A Study on Integrated Control and Safety Management Systems for LNG Membrane Storage Tank (멤브레인식 LNG 저장탱크용 통합제어안전관리시스템에 대한 연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, the integrated control and safety management system for a super-large LNG membrane storage tank has been presented based on the investigation and analysis of measuring equipments and safety analysis system for a conventional LNG membrane storage tank. The integrated control and safety management system, which may increase a safety and efficiency of a super-large LNG membrane storage tank, added additional pressure gauges and new displacement/force sensors at the steel anchor between an inner tank and a prestressed concrete structure. The displacement and force sensors may provide clues of a membrane panel failure and a LNG leakage from the inner tank. The conventional leak sensor may not provide proper information on the membrane panel fracture even though LNG is leaked until the leak detector, which is placed at the insulation area behind an inner tank, send a warning signal. Thus, the new integrated control and safety management system is to collect and analyze the temperature, pressure, displacement, force and LNG density, which are related to the tank system safety and leakage control from the inner tank. The digital data are also measured from measurement systems such as displacement and force of a membrane panel safety, LNG level and density, cool-down process, leakage, and pressure controls.

Analysis of Overseas LNG Bunkering Business Model (해외 LNG벙커링 비즈니스 모델 분석)

  • Kim, Ki-Dong;Park, So-Jin;Choi, Kyoung-Sik;Cho, Byung-Hak;Oh, Yong-Sam;Cho, Sang-Hoon;Cha, Keunng-Jong;Cho, Won-Jun;Seong, Hong-Gun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • As the international Maritime Organization is tightening up the emission regulation vessel, many countries and companies are pushing ahead the LNG fuel as one of long term solution for emission problems of ship. as a study on the way to conduct business for LNG bunkering around the world, this study was analyzed in view-point of business models focused on major countries such as Japan, China, Singapore, Europe and United States. The results of this study are as follows. China first established a nation-centered LNG bunkering policy. And then, the state and the energy company have been cooperating and carrying on LNG bunkering business for LNG fueled ships. Some countries in Europe and United States are in the process of LNG bunkering business mainly with private company. To obtain cheaper LNG fuel than bunker-C, the private company has a business model of LNG bunkering on their own LNG fueled ships, while securing LNG with high price competitiveness through partnership with middle class operators such us LNG terminal and natural gas liquefaction plant. Also, the LNG bunkering business around the world is focused on private companies rather than public corporations, but it was going to be focused on large energy companies because the initial cost required to build LNG bunkering infrastructure. Three models (TOTE model, Shell model, ENGIE model) of LNG bun kering business are currently being developed. It has been found that the way in which LNG bunkering business is implemented by different countries is applied differently according to the enterprise and national policy.

A Study of Thermo-structural Analysis and Fatigue Analysis for Independent Type-B LNG Fuel Tank (독립형 B타입 LNG 연료 탱크의 열-구조 연성해석 및 피로 해석에 관한 연구)

  • Kim, Tae-Wook;Kim, Jong-Min;Kim, Jong-Hwan;Lee, Jeong-Ho;Park, Seong-Bo;Lee, Sung-Min;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.410-419
    • /
    • 2016
  • With the aim of reducing greenhouse gas emissions by 20 percent by 2020 and by 50 percent by 2050 from their 2005 level, International Maritime Organization (IMO) regulated the emissions of SOx and NOx by setting the emission control area in 2012. Since these environmental regulations have been reinforced, demands for the LNG fuel ships are expected to increase dramatically. Accordingly, the worldwide shipbuilding companies spur the development of the LNG fueled ships. Therefore, it is essential to carry out the research on the development of LNG fuel tank, which is one of the important components of the LNG fuel supply system. In this study, the deliberate finite element analysis of type-B LNG fuel tank for 10,000 TEU containership was carried out to evaluate structural safety and provide the process for analyzing stress levels and evaluating fatigue life of target structural. In particular, thermo-structural analysis and fatigue analysis were carried out using the databases on materials and structures of LNG fuel tank.

FE Analysis on the Design Safety of Inner Tank Bottom Plate in Terms of Cryogenic Temperature Loadings (초저온 하중을 고려한 내부탱크 바닥판의 설계 안정성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.8-15
    • /
    • 2004
  • This paper presents von Mises stress, deformation, and rotating distortion moment characteristics of inner tank bottom plate as a function of a cryogenic temperature difference along the radial distance from the center area to the corner one. The calculated results show that the filling level of LNG at the beginning of the cool-down process is very important for the design safety analysis of the inner tank. Obviously the thermal loading by a temperature difference between the LNG vapor gas of $-80^{\circ}C$ and a LNG temperature of $-162^{\circ}C$ affects to the thermal related characteristics of the bottom plates and annular one. From the computed results, the temperature difference by a vapor gas and liquid of LNG may lead to the thermal instability of the bottom plate. This phenomenon may cause the system failure of an inner tank.

  • PDF

A Basic Study on the District Cooling System of LNG Cold Thermal Energy (LNG 냉열 에너지의 지역 냉방 시스템에 관한 기반 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.36-43
    • /
    • 2003
  • This paper provides the possibility of the district cooling system by using a LNG cold thermal energy. A liquefied natural gas provides a plenty of cooling source energy during a gasification of a liquefied natural gas. In recent, an ice thermal storage system is used for cooling a building, and a deep water source cooling system has been introduced as a district cooling system in which is used to cool the office towers and other large buildings in old and new downtown. LNG cooling energy refers to the reuse of a large body of naturally cold fluids as a heat sink for process and comfort space cooling as an alternative of conventional, refrigerant based cooling systems. Coincident with significant clean energy and operating cost savings, LNG cold energy cooling system offers radical reductions in air-borne pollutants and the release of environmentally harmful refrigerants in comparison to the conventional air-conditioning system. This study provides useful information on the basic design concepts, environmental considerations and performance related to the application of LNG cold thermal energy.

  • PDF

Effect of Two staged Inter-cooler on Efficiency of LNG Liquefaction Process (LNG 액화 사이클 효율에 미치는 2단 압축 인터쿨러의 영향)

  • Yoo, Sun-Il;Oh, Seung-Taek;Lee, Ho-Saeng;Yoon, Jung-In;Choi, Keun-Hyung;Lee, Sang-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • In this study, several types of natural gas liquefaction processes using two staged Inter-cooler are simulated and designed to secure a competitiveness in the industry of natural gas liquefaction plant. These processes are based on basic cascade process, and all of these are improved with two staged compressors type. One of types is applied Inter-cooler to each cycle such as propane, ethylene, methane, the other type is applied Inter-cooler to whole cycle. These processes are compared characteristics of performance with basic process. Cascade process with two staged Inter-cooler in the whole cycle is on the top ranked with increment ratio of COP about 13.7 ~ 20.5%, and yield efficiency of this process are improved comparing with the basic process by 23.8% ~ 35% lower specific power, respectively.