• Title/Summary/Keyword: LNG 냉열에너지

Search Result 42, Processing Time 0.023 seconds

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

A Performance Study on the Cold Power Generation System for LNG terminal using ASPEN PLUS (ASPEN PLUS를 이용한 LNG 인수기지용 냉열발전 시스템 성능 연구)

  • 김동수;박영무
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.57-63
    • /
    • 1993
  • 냉열발전기술은 일본에서 많이 연구되어 다수의 상업 플랜트가 가동되고 있다. 일본에서는 천연가스 공급압력의 이원화(40 kgf/$\textrm{cm}^2$, 10 kgf/$\textrm{cm}^2$)로 직접 팽창방식을 적용할 수 있어 냉열발전의 경제성이 유리한 반면 국내에서는 비교적 높은 압력(70kgf/$\textrm{cm}^2$)의 단일 압력 공급체계에 적합한 냉열발전 시스템을 모색하여야 한다. 특히 발전용량 규모가 비교적 적은 냉열발전 시스템의 경제성 측면의 불리한 점을 고려할 때 적용 가능한 해당 발전공정들에 대해 전산모사의 방법을 이용하여 다양한 설계조건에서 최적의 조건들을 검토하여야 한다. 따라서 본 연구에서는 LNG의 저온 Exergy를 이용한 Rankine Cycle, LNG의 압력 Exergy를 이용한 부분팽창 Cycle 및 이 두 싸이클의 혼합 공정인 Linde 공정에 대해 현재 인수기지에서 운영되고있는 각종 설비들의 설계 데이타를 기준으로 상용모사기인 ASPEN PLUS를 이용, 국내 천연가스 공급 체계에 의거 각 공정별 최대 및 최적의 전력 발생 조건들을 검토하였다. 공정별 출력 및 엑서지 효율을 비교한 결과 약 3 ~ 6 Mw의 전력을 생산할 수 있음을 알 수 있었으며 최대 엑서지 효율은 37 %를 얻을 수 있었다. 또한 부분직접팽창방식의 최적시스템을 제시하였고 동일한 전열면적인 경우 부분직접팽창과 랭킨 싸이클의 성능은 비슷한 것으로 확인되었다.

  • PDF

A study on the performance enhancement for combined cycle using cold heat of LNG (LNG 냉열을 이용한 복합사이클 발전시스템의 성능개선연구)

  • 김용희;김병일
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.77-80
    • /
    • 1996
  • 우리나라에서 피크부하용으로 사용하는 복합발전이 하계시에서 외기온도가 상승함에 따라 실제로는 정격출력을 내지 못하고 있다. 따라서 본 연구에서는 연료(LNG)의 냉열을 이용하여 가스터빈의 연소용공기를 냉각시킬 경우, 복합발전 시스템의 성능변화를 분석하기 위하여 시뮬레이션을 수행하였다. 그 결과 LNG의 냉열을 이용하여 연소용공기를 원하는 온도까지 냉각시킬 수 있음을 확인할 수 있었다. 또한 연소기로 연료를 투입하기전에 설계온도까지 예열시키는 열교환기를 통해 배기가스에 함유된 현열을 더욱 많이 회수하면서, 가스터빈 투입연료의 온도를 상승시킬 수 있어, 시스템효율이 더욱 상승함을 알 수 있었다. 결론적으로 외기온도가 변하는 경우에, 본 시스템의 도입을 위해서는 경제성분석과 더불어 열교환기 시스템의 최적합성이 추후 진행되어야 할 것이며, 이를 통해 최적의 발전시스템을 구성할 수 있으리라 생각된다.

  • PDF

A Comparative Study of the Cold Power Generation Systems for LNG Terminal (LNG 인수기지용 냉열발전 시스템 비교 연구)

  • 김동수;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1996
  • The heat of evaporation (cold energy) of LNG is the energy consumed in the production of LNG. This energy amounts to 14% of the NG. In Pyungtak LNG terminal, it is about 96 MW in 1993. In order to utilize the cold energy, the cold power generation systems are investigated: The Rankine cycle using the low temperature energy, the partial expansion cycle using the pressure energy, and the Linde process which is a combined cycle of the Rankine and the partial direct expansion cycle. The commercial simulator, ASPEN Plus, is used. The conceptual design data are obtained from the current facilities of the Pyungtak LNG terminal. The performances of three systems are evaluated. The amount of electric power ranges iron 3 MW to 6MW. The optimum energy efficiency is about 37%. The optimum design conditions are obtained for the partial direct expansion (PDE) cycle. The performance of the PDE cycle is supposed to be comparable to that of the Rankine cycle if the areas of the total heat exchanger of the both cycle are equal.

  • PDF

Estimation of the Amount of Electric Power Saved in the Carbon Dioxide Liquefaction Process using LNG Cold Heat (LNG 냉열을 활용한 이산화탄소 액화공정에서 절감되는 전력량의 산출)

  • LEE, JIHWAN;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.259-264
    • /
    • 2020
  • In this study, comparison study has been performed between two-stage compression and a vapor-recompression refrigeration cycle and a liquefaction using LNG cold heat. When using a first method using two-stage compression and a refrigeration cycle, at least three compressors are required, however when using LNG cold heat, no compressor is required since carbon dioxide can be pumped after condensing with the heat exchange with -160℃ of LNG. Through this study, we can save more than one hundred million KRW annually by using LNG cold heat instead of using gas compression and refrigeration cycle.

A Study on the Power Saving with the Use of LNG Cold Heat in a Cascade Refrigeration Cycle using Methane, Ethylene and Propylene as Refrigerants (메탄, 에틸렌 및 프로판 냉매를 활용한 다원 냉동 사이클에서 LNG 냉열을 활용한 동력 절감 방안에 대한 연구)

  • CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.302-306
    • /
    • 2020
  • In this study, computer simulation works using PRO/II with PROVISION V10.2 have been performed for a cascade refrigeration cycle using methane, ethylene and propane as refrigerants. LNG cold heat was also utilized in order to save the compression powers for the ethylene and propane refrigeration cycles. It was concluded that about 77% of compression power can be saved by using LNG cold heat through the exchanging heat with refrigerants. We could also know that the cold heat price contained in 1 ton of LNG is 16,155 won.

A Study on the Price Evaluation Per 1 Ton of Liquefied Natural Gas According to the Refrigerants Supply Temperature in the Electric Refrigerator (전기식 냉동기에서 냉매의 공급온도에 따른 액화천연가스의 톤당 냉열 가격 산출에 대한 연구)

  • KIM, YONUNGWOO;PARK, ILSOO;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.473-477
    • /
    • 2019
  • In this paper, cold heat price contained in the 1 ton/h of LNG has been evaluated using PRO/II with PROVISION release 10.2 from Aveva company when LNG is used to liquefy several refrigerants instead of using vapor recompression refrigeration cycle. Normal butane, R134a, NH3, R22, propane and propylene refrigerants were selected for the modeling of refrigeration cycle. It was concluded that LNG cold heat price was inversely proportional to the refrigerant supply temperature, even though LNG supply flow rate is not varied according to the refrigerant supply temperature.

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.

A Study on the Utilization of the LNG Cold Heat for the Reduction of the Power Consumption in Main Air Compressors in Cryogenic Air Separation (심냉 공기분리공정의 공기압축공정에서 전력비 절감을 위한 액화천연가스 냉열 활용에 대한 연구)

  • CHO, DUHEE;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • In this work, a study for the reduction of the electric power consumption has been estimated in main air compressors in the air separation unit through cryogenic distillation columns with PRO/II with PROVISION V10.2 at AVEVA company. Both required LNG mass flow rate and cold heat contained in 1 ton of LNG were also predicted using Peng-Robinson equation of state with Twu's new alpha function. Through this work, we concluded that 32.33-48.69% of electric power could be saved by using LNG cold heat.

Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas (액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발)

  • Noh, Wonjun;Park, Sihwan;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.200-208
    • /
    • 2021
  • Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.