• Title/Summary/Keyword: LNG운반선 화물창

Search Result 19, Processing Time 0.022 seconds

A Study on the Improvement of LNGC Re-liquefaction System (LNG선 재액화 시스템의 성능 개선에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.659-664
    • /
    • 2009
  • LNG carriers have, up to 2006, mainly been driven by steam turbines. The Boil-Off Gas from the LNG cargo tanks has so far been used as fuel. This is a costly solution that requires special skills during construction and operation. Alternative propulsion systems offer far better fuel economical efficiency than steam turbines. Instead of previous practice using Boil-Off Gas as a fuel, the Re-liquefaction system establishes a solution to liquefy the Boil-Off Gas and return the LNG to the cargo tanks. This Re-liquefaction of Boil-Off Gases on LNG carriers results in increased cargo deliveries and allows owners and operators to choose the most optimum propulsion system. In this study, thermodynamic cycle analysis has been performed on two type of LNG Re-liquefaction system which was designed and adopted for the Q-Flex(216,000$m^3$) and Q-Max(266,000$m^3$) LNG carrier under construction at Korea ship yards and variable key factor was simulated to compare efficiency, power and nitrogen consumption of each Re-liquefaction system.

Comparative Experimental Study on Sloshing Impact Loads of LNG Cargoes in Membrane Containment System of 160K LNGC (160K LNGC 멤브레인 화물창에 작용하는 슬로싱 충격 하중에 대한 비교 실험 연구)

  • Kwon, Chang Seop;Lee, Young Jin;Kim, Hyun Joe;Lee, Dong Yeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • A new state-of-the-art sloshing research equipment has developed to perform the model test of LNG tanks for the safer design of LNG cargo containment system in violent sloshing phenomena. This sloshing test system has developed by the Samsung Ship Model Basin (SSMB) and thoroughly verified. The accuracy of the motion of hexapods equipment for the excitation of a model tank has been verified. The maximum displacement in six degrees of freedom, harmonic motions of various frequencies, and irregular motions in wave conditions are measured and compared with input signals. In order to confirm the reliability of the post-processing program for measured impact pressure, the post-processed results were compared with those of the reference institute. A benchmarking sloshing test using 1/50 scale model of 160K LNGC tank was conducted for the verification of the whole testing system. The partial filing levels were considered. As a result of the experiment, it is confirmed that the results are in good agreement with those of the reference institute.

Investigation of the Bonding Stress of the 2nd Barrier for LNG Carrier Cargo Containment System Considering Various Working Conditions (다양한 작업 조건을 고려한 LNG 운반선 화물창 2차 방벽의 극저온 접착강도 분석)

  • Jeong-Hyeon Kim;Hee-Tae Kim;Byeong-Kwan Hwang;Seul-Kee Kim;Tae-Wook Kim;Doo-Hwan Park;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.499-507
    • /
    • 2023
  • The core of the liquefied natural gas (LNG) carrier cargo containment system (CCS) is to store and transport LNG safely under temperatures below -163 degrees Celsius. The secondary barrier of the LNG CCS is adopted to prevent LNG leakage from CCS to the ship's hull structure. Recently, as the size of the LNG CCS increases, various studies have been conducted on the applied temperature and load ranges. The present study investigates the working condition-dependent bonding strength of the PU15 adhesives of the secondary barrier. In addition, the mechanical performance is analyzed at a cryogenic temperature of -170 degrees Celsius, and the failure surface and failure mode are investigated depending on the working condition of the bonded process. Even though the RSB and FSB-based fracture mode was confirmed, the results showed that all the tested scenarios satisfied the minimum requirement of the regulation.

A numerical study on the fatigue evaluation of mark-III LNG primary barrier (수치해석을 이용한 Mark-III LNG 1차 방벽에 대한 피로 평가)

  • Kwon, Sun-Beom;Kim, Myung-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.337-344
    • /
    • 2017
  • The demand of liquified natural gas is increasing due to environmental issues. This reason has resulted in increasing the capacity of liquified natural gas cargo tank. The Mark-III type primary barrier directly contacts liquified natural gas. Also, the primary barrier is under various loading conditions such as weight of liquified natural gas and sloshing loads. During a ship operation, various loads can cause fatigue failure. Therefore, the fatigue life prediction should be evaluated to prevent leakage of liquified natural gas. In the present study, the fatigue analysis of insulation system including primary barrier is performed using a finite element model. The fatigue life of primary barrier is carried out using a numerical study. The value of principle stress and the location of maximum principle stress range are calculated, and the fatigue life is evaluated. In addition, the effects on the insulation panel status and the arrangement of knot or corrugation are analyzed by comparing the fatigue life of various models. The insulation system which has best structural performance of primary barrier was selected to ensure structural integrity in fatigue assessment. These results can be used as a design guideline and a fundamental study for the fatigue assessment of primary barrier.

Development of Equations for Dynamic Design Loads of Sphere Type LNG Tank with Cylindrical Extension (원통 확장부를 갖는 구형 LNG 탱크의 동적 설계하중 산출식 개발)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.262-267
    • /
    • 2017
  • The number of shops needed for the fabrication of a sphere type cargo tank for an LNG carrier is proportional to the size of the tank to be constructed. Due to the limitations of facility investment, it is difficult to fabricate various size tanks with a perfectly spherical shape in the (factory). An efficient method of increasing the capacity of the cargo tank is to extend the conventional sphere type LNG tank vertically by inserting a cylindrical shell structure. In this study, equations for the dynamic pressure distribution due to horizontal acceleration are derived for a sphere type LNG tank with central extension. The derived equations can be easily applied to the design and structural assessment of a sphere type LNG tank with central extension. Furthermore, the results of this study can be combined with the static design loads previously reported by Shin & Ko [9], in order to establish a simplified analysis method which enables a precise initial estimate to be obtained, thereby obviating the need for a time consuming finite element analysis.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Study on the Effect of Density Ratio of Gas and Liquid in Sloshing Experiment (기체-액체 밀도차에 대한 슬로싱 충격압력의 실험적 고찰)

  • Ahn, Yangjun;Kim, Sang-Yeob;Kim, Kyong-Hwan;Lee, Sang-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.120-128
    • /
    • 2013
  • This paper presents the results of sloshing experiments having different fluids in model tanks with various density ratios. The experimental model consisting water and air at ambient, which has been commonly used, is not consistent in density ratio with that of an actual LNG cargo tank. Therefore, an advanced experimental scheme is developed to consider the same density ratio of LNG and NG by using a mixed gas of sulfur hexafluoride ($SF_6$) and nitrogen ($N_2$). For experimental observation, a two-dimensional model tank of 1/40 scale and a three-dimensional model tank of 1/50 scale have been manufactured and tested at various conditions. Two different fillings with various excitation frequencies under regular motions have been considered for the two-dimensional model tank, and three different filling levels under irregular motions have been imposed for the three-dimensional model tank. The density ratio between gas and liquid varies from the ratio of the ambient air and water to that of the actual LNG cargo container, and the different composition of gas is used for this variation. Based on the present experimental results, it is found that the decrease of sloshing pressure is predicted when the density ratio increases.

A Study on 8-Stage Loading Method of the Scaffolding Module for LNG Carriers (LNG 운반선 비계 모듈의 8단 탑재 방안 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.78-85
    • /
    • 2020
  • The scaffolding system, which is a construction workbench of the cargo containment for a membrane LNG carrier, is a large truss structure composed of various members. To shorten the installation period and process of the scaffolding system, it is effective to enlarge the mounting unit from the existing two stages to eight stages. Owing to the increase in lifting load according to the large size of the module, the stresses around the pin and hole will be increased significantly. In this study, a tensile strength test and contact stress analysis were performed to confirm the structural safety. The relatively large hole deformation was observed visually near the average load generated in the vertical pipe at the top through tensile strength tests. A contact stress calculation confirmed the stress distribution around the hole. The contact problem was dealt with in terms of the Herzian contact stress. The possibility of 8-stage loading was examined by comparing the yield strength and contact stresses of failure critical locations. As a result, the 8-stage loading method of the existing scaffolding material was inadequate, and a new loading method with proper safety is proposed.

Numerical Simulation of Two-dimensional Sloshing Phenomena Using Marker-density Method (밀도함수법을 이용한 2차원 슬로싱 현상의 수치시뮬레이션)

  • Lee, Young-Gill;Jeong, Kwang-Leol;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.650-658
    • /
    • 2009
  • Two dimensional sloshing phenomena in regularly excited liquid cargo tank are numerically simulated with finite difference method. Navier-Stokes equations and continuity equation are computed for this study. The free-surface is determined every time step satisfying kinematic boundary condition using marker-density method. And the exciting force is treated by adding the acceleration of the tank to source term. The results are compared with other existing experiment results. And the comparison results show a good agreement. The sloshing phenomena in the tank of the 138K LNG carrier in sway motion is simulated with present calculation methods in low filling level. To find the relations between impact pressure and excitation condition, the calculations are performed in various amplitudes and periods. The averaged maximum pressures are compared each other.