• Title/Summary/Keyword: LMNA

Search Result 3, Processing Time 0.016 seconds

Deletion of the Lmna Gene Induces Growth Delay and Serum Biochemical Changes in C57BL/6 Mice

  • Ruan, J.;Liu, X.G.;Zheng, H.L.;Li, J.B.;Xiong, X.D.;Zhang, C.L.;Luo, C.Y.;Zhou, Z.J.;Shi, Q.;Weng, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • The A-type lamin deficient mouse line ($Lmna^{-/-}$) has become one of the most frequently used models for providing insights into many different aspects of A-type lamin function. To elucidate the function of Lmna in the growth and metabolism of mice, tissue growth and blood biochemistry were monitored in Lmna-deficient mice, heterozygous ($Lmna^{+/-}$) and wide-type ($Lmna^{+/+}$) backcrossed to C57BL/6 background. At 4 weeks after birth, the weight of various organs of the $Lmna^{-/-}$, $Lmna^{+/-}$ and $Lmna^{+/+}$ mice was measured. A panel of biochemical analyses consisting of 15 serological tests was examined. The results showed that Lmna deficient mice had significantly decreased body weight and increased the ratio of organ to body weight in most of tissues. Compared with $Lmna^{+/+}$ and $Lmna^{+/-}$ mice, $Lmna^{-/-}$ mice exhibited lower levels of ALP (alkaline phosphatase), Chol (cholesterol), CR (creatinine), GLU (glucose), HDL (high-density lipoprotein cholesterol) and higher levels of ALT (alanine aminotransferase) (p<0.05). $Lmna^{-/-}$ mice displayed higher AST (aspartate aminotransferase) values and lower LDL (lowdensity lipoprotein cholesterol), CK-MB (creatine kinase-MB) levels than $Lmna^{+/+}$ mice (p<0.05). There were no significant differences among the three groups of mice with respect to BUN (blood urea nitrogen), CK (creatine kinase), Cyc C (cystatin C), TP (total protein), TG (triacylglycerols) and UA (uric acid) levels (p>0.05). These changes of serological parameters may provide an experimental basis for the elucidation of Lmna gene functions.

Porcine LMNA Is a Positional Candidate Gene Associated with Growth and Fat Deposition

  • Choi, Bong-Hwan;Lee, Jung-Sim;Lee, Seung-Hwan;Kim, Seung-Chang;Kim, Sang-Wook;Kim, Kwan-Suk;Lee, Jun-Heon;Seong, Hwan-Hoo;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1649-1659
    • /
    • 2012
  • Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL) region for fat deposition in a region (89 cM) of porcine chromosome 4 (SSC4). To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH) mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM). Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10) of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3'untranslated region (UTR), rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5'UTR and a 3'UTR. Two synonymous single nucleotide polymorphisms (SNPs) were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A) was significantly associated with weight at 30 wks (p<0.01) and crude fat content (p<0.05). This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

Genetic Variations of Eight Candidate Genes in Korean Obese Group

  • Kang, Byung-Youn;Lee, Kang-Oh;Bae, Joon-Seol;Kim, Ki-Tae;Yoon, Moon-Young;Lim, Seok-Rhin;Seo, Sang-Beom;Shin, Jung-Hee;Lee, Chung-Choo
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • Obesity is a complex metabolic disorder with a strong genetic component. There are many candidate genes for obesity and its related phenotypes. We studied genetic variations between Korean obese and lean groups. Polymorphisms investigated were the Msp I polymorphism of the $\alpha$$_{2A}$-adrenergic receptor ($\alpha$$_{2A}$-AR) gene, the Mnl I polymorphism of the $\alpha$$_2$-adrenergic receptor ($\alpha$$_2$-AR) gene, the BstO I polymorphism of the $\beta$$_3$-adrenergic receptor ($\beta$$_3$-AR) gene, the Pml I polymorphism of the lamin A/C (LMNA) gene, the Hga I polymorphism of the clearance receptor (NPRC) gene, the Msp I polymorphism of the leptin gene, BclI polymorphism of the uncoupling protein 1 (UCPI) gene and the Hha I polymorphism of the fatty acid binding protein 2 (FABP2) gene. Among these genetic markers, Pml I polymorphism at the LMNA gene and Bcl I polymorphism at the UCP1 gene were significantly associated with obesity. However, further studies are required whether thease findings are reproduced in large population, although two polymorphisms might be useful as genetic markers in the ethiology of obesity in Korean population.ion.

  • PDF