• 제목/요약/키워드: LM (Levenberg-Marquardt) optimization

검색결과 7건 처리시간 0.016초

LM 최적화 알고리즘을 이용한 유리함수 모델의 데이터 피팅 (A Data Fitting Technique for Rational Function Models Using the LM Optimization Algorithm)

  • 박재한;배지훈;백문홍
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.768-776
    • /
    • 2011
  • This paper considers a data fitting problem for rational function models using the LM (Levenberg-Marquardt) optimization method. Rational function models have various merits on representing a wide range of shapes and modeling complicated structures by polynomials of low degrees in both the numerator and denominator. However, rational functions are nonlinear in the parameter vector, thereby requiring nonlinear optimization methods to solve the fitting problem. In this paper, we propose a data fitting method for rational function models based on the LM algorithm which is renowned as an effective nonlinear optimization technique. Simulations show that the fitting results are robust against the measurement noises and uncertainties. The effectiveness of the proposed method is further demonstrated by the real application to a 3D depth camera calibration problem.

다수 정보들의 비선형 최적화에 의한 수중 음원 위치 추정 성능 향상 (Performance enhancement of underwater acoustic source localization by nonlinear optimization of multiple parameters)

  • 양인식;권택익;강태웅;김기만
    • 한국음향학회지
    • /
    • 제36권6호
    • /
    • pp.419-424
    • /
    • 2017
  • 수중 음원의 위치를 추정하기 위해 도달 시간차와 도달 방향이 활용될 수 있다. 하지만 위치 추정 성능은 표적과 수신단 사이의 상대적인 위치, 수신기들의 기하학적인 배치 구조 및 음속 등에 영향을 받는다. 본 논문에서는 추정된 다수의 표적 정보들을 조합하여 위치 추정 성능을 향상시키는 방법을 제안하였다. 제안한 방법은 도달 시간차, 도달 방향 및 음속 값을 변수로 사용하며, 비선형 최적화 과정 가운데 하나인 LM(Levenberg-Marquardt) 방법이 적용되었다. 제안된 방법의 성능은 모의실험을 통해 분석되었다. 결과에서 제안된 방법의 평균 위치 추정 오차가 기존의 방법을 사용한 경우보다 낮게 나타났다.

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Extraction of Passive Device Model Parameters Using Genetic Algorithms

  • Yun, Il-Gu;Carastro, Lawrence A.;Poddar, Ravi;Brooke, Martin A.;May, Gary S.;Hyun, Kyung-Sook;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • 제22권1호
    • /
    • pp.38-46
    • /
    • 2000
  • The extraction of model parameters for embedded passive components is crucial for designing and characterizing the performance of multichip module (MCM) substrates. In this paper, a method for optimizing the extraction of these parameters using genetic algorithms is presented. The results of this method are compared with optimization using the Levenberg-Marquardt (LM) algorithm used in the HSPICE circuit modeling tool. A set of integrated resistor structures are fabricated, and their scattering parameters are measured for a range of frequencies from 45 MHz to 5 GHz. Optimal equivalent circuit models for these structures are derived from the s-parameter measurements using each algorithm. Predicted s-parameters for the optimized equivalent circuit are then obtained from HSPICE. The difference between the measured and predicted s-parameters in the frequency range of interest is used as a measure of the accuracy of the two optimization algorithms. It is determined that the LM method is extremely dependent upon the initial starting point of the parameter search and is thus prone to become trapped in local minima. This drawback is alleviated and the accuracy of the parameter values obtained is improved using genetic algorithms.

  • PDF

A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns

  • Dehghanbanadaki, Ali;Rashid, Ahmad Safuan A.;Ahmad, Kamarudin;Yunus, Nor Zurairahetty Mohd;Said, Khairun Nissa Mat
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.385-396
    • /
    • 2022
  • The accurate determination of the subgrade reaction modulus (Ks) of soil is an important factor for geotechnical engineers. This study estimated the Ks of soft soil improved with floating deep cement mixing (DCM) columns. A novel prediction model was developed that emphasizes the accuracy of identifying the most significant parameters of Ks. Several multi-layer perceptron (MLP) models that were trained using the Levenberg Marquardt (LM) backpropagation method were developed to estimate Ks. The models were trained using a reliable database containing the results of 36 physical modelling tests. The input parameters were the undrained shear strength of the DCM columns, undrained shear strength of soft soil, area improvement ratio and length-to-diameter ratio of the DCM columns. Grey wolf optimization (GWO) was coupled with the MLPs to improve the performance indices of the MLPs. Sensitivity tests were carried out to determine the importance of the input parameters for prediction of Ks. The results showed that both the MLP-LM and MLP-GWO methods showed high ability to predict Ks. However, it was shown that MLP-GWO (R = 0.9917, MSE = 0.28 (MN/m2/m)) performed better than MLP-LM (R =0.9126, MSE =6.1916 (MN/m2/m)). This proves the greater reliability of the proposed hybrid model of MLP-GWO in approximating the subgrade reaction modulus of soft soil improved with floating DCM columns. The results revealed that the undrained shear strength of the soil was the most effective factor for estimation of Ks.

Prediction of aerodynamic coefficients of streamlined bridge decks using artificial neural network based on CFD dataset

  • Severin Tinmitonde;Xuhui He;Lei Yan;Cunming Ma;Haizhu Xiao
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.423-434
    • /
    • 2023
  • Aerodynamic force coefficients are generally obtained from traditional wind tunnel tests or computational fluid dynamics (CFD). Unfortunately, the techniques mentioned above can sometimes be cumbersome because of the cost involved, such as the computational cost and the use of heavy equipment, to name only two examples. This study proposed to build a deep neural network model to predict the aerodynamic force coefficients based on data collected from CFD simulations to overcome these drawbacks. Therefore, a series of CFD simulations were conducted using different geometric parameters to obtain the aerodynamic force coefficients, validated with wind tunnel tests. The results obtained from CFD simulations were used to create a dataset to train a multilayer perceptron artificial neural network (ANN) model. The models were obtained using three optimization algorithms: scaled conjugate gradient (SCG), Bayesian regularization (BR), and Levenberg-Marquardt algorithms (LM). Furthermore, the performance of each neural network was verified using two performance metrics, including the mean square error and the R-squared coefficient of determination. Finally, the ANN model proved to be highly accurate in predicting the force coefficients of similar bridge sections, thus circumventing the computational burden associated with CFD simulation and the cost of traditional wind tunnel tests.