• Title/Summary/Keyword: LLW

Search Result 27, Processing Time 0.032 seconds

Measurement of Ultrasonic Speed for Evaluating Compressive Strength of Solidified Low & Intermediate-Level Radioactive Wastes (중·저준위 방사성폐기물 고화체의 압축강도 평가를 위한 초음파속도 측정)

  • Moon, Gyoon Young;Lee, Tae Hun;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2011
  • In order to ship low & Intermediate level radioactive waste drums, which have been temporarily stored on site, to a disposal facility, their physical and chemical properties should be evaluated and proven to meet the acceptance guideline prior to their shipment. Ultrasonic velocity method, which has been used to estimate the strength of concrete, can be suggested to evaluate the compressive strength of solidified radioactive waste, which is one of the evaluated properties. The strength is estimated from acoustic velocity. However, a guided wave traveling along a drum is generated when applying ultrasonic method to the drum, and this makes it difficult to analyze the signal due to overlap between transmitted wave through the contents in drum and the guided wave. This paper reported feasibility of ultrasonic method to evaluate of the compressive strength of the solidified LLW. It is observed that the guide wave is greater than transmitted wave, and ultrasonic velocity could be estimated from transmitted wave signal arriving prior to the guided wave

Reflection and Transmission Coefficients for Rubble Mound Breakwaters in Busan Yacht Harbor

  • Park, O Young;Dodaran, Asgar Ahadpour;Bagheri, Pouyan;Kang, Kyung Uk;Park, Sang Kil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.90-94
    • /
    • 2013
  • This paper reports the results obtained for there flection and transmission coefficients on rubble mound breakwaters in Busan Yacht Harbor. A2D physical model test was conducted in the wave flume at the Coastal Engineering Research Laboratory at Pusan National University, Busan, South Korea. In this study, physical model tests were completed to further our understanding of the hydrodynamic processes that surround a rubble mound structure subjected to irregular waves. In particular, the reflection and transmission coefficients, as well as the spectrum transformation, were analyzed. This analysis suggests that with an increase in wave height around a rubble mound, the reflection coefficient drastically increases at each water level (HHW or MSL or LLW). Moreover, when the water level changes from HHW to LLW, the reflection coefficient is suddenly reduced. A further result of the analysis is that the transmission coefficient strongly drops away from the rear of the structure. Finally, in regard to the rubble mound breakwater in Busan Yacht Harbor, a consideration of the reflection and transmission coefficients plays an important role in the design.

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

Understanding the creep behavior of bentonite-sand mixtures as buffer materials in a low-level radioactive waste repository in Taiwan

  • Guo-Liang Ren;Wei-Hsing Huang;Hsin-Kai Chou;Chih-Chung Chung
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3884-3897
    • /
    • 2024
  • This study investigates the creep behavior of bentonite-sand mixtures as potential buffer materials for low-level radioactive waste (LLW) repositories, with a specific case study in Taiwan. To assess the long-term hydro-mechanical properties, constant-volume swelling pressure, hydraulic conductivity, strain-controlled shear, and stress-controlled shear tests were conducted on MX80 and KV1 bentonite-sand mixtures. The experimental results indicate that MX80-sand 70/30 mixtures are prioritized as the buffer materials with 2.10 MPa swelling pressure and 1 × 10-13 m/s hydraulic conductivity. However, the shear strength of mixtures was reduced by almost 50 % when fully saturated. Furthermore, this study proposed a novel stress-controlled direct shear apparatus to retrieve the creep model parameters. The numerical method based on the creep model efficiently supports and simulates the saturation process and creep displacement. The finite element method (FEM) result predicts that the buffer of both bentonite-sand mixtures will achieve an average degree of saturation of 95 % at the end of three decades and full saturation in 100 years. The simulated creep displacement results at key nodes suggest that both top and bottom parts in the buffer, assembled from MX80-sand 70/30 mixtures or KV1-sand 70/30 mixtures, will have almost equivalent values of 4 mm in the horizontal and 2 mm in the vertical directions eventually.

Evaluation on SGBD demineralizers and Optimized Cation/Anion Resin ratio in PWR NPPs

  • Sung Ki-Bang;Nam Yong-Jae;Lee Jae-Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.79-86
    • /
    • 2005
  • In PSR on the Kori 3&4 NPP, The low level radioactive waste resin from SGBD demineralizer is more than $65\%$ of total waste resin in NPP So, it needs to be improved. The secondary cooling water pH control methods are used ammonia-AVT from the first. According to changing ETA which is better than ammonia, SGBD cation load is increased about 2-3 times. Waste resin product is also increased in proportion to the SGBD cation load. To reduce the waste volume, new cation resin exchange criteria is confirmed that demineralizer is almost saturated.

  • PDF

Laser Line Welder for Continuous Operation of Cold-rolled Steel Coil (초극박재 냉연코일의 연속조업을 위한 Laser Line Welder)

  • Choi, Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2015
  • A laser line welder using a solid-state laser (Yb:YAG) has been manufactured for joining ultra-thin cold-rolled steel coils in steelworks. The coils to be welded primarily range from 0.15 to 0.3 mm in thickness and 800 to 1,100 mm in width. Because the steel plate is extremely thin, it is very important to control the stop positions of the clamp at cutting and welding points. In this study, both hydraulic proportional control valves and LVDT sensor embedded cylinders were used to precisely control and monitor the positions of clamps with complementary stoppers. As a result, the positions could be controlled within an error of ${\pm}30{\mu}m$. Erichsen cupping tests on the welded joints show that the Erichsen index ranges from 4.4 to 4.6 mm. Furthermore, the tensile strength of welding points is comparable to that of the base metal.

Environmental radiation monitoring program of low- and intermediate- level waste disposal site ($\cdot$저준위 방사성폐기물 처분시설 환경방사선조사 계획)

  • 윤철환;한재문;김경덕
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.239-243
    • /
    • 2003
  • Environmental monitoring program is investigated based on Atomic Energy Law and foreign country radiation monitoring programs on low-and intermediate level radioactive waste disposal site. It is anticipated that the number of radiation measurements and samples will be higher than those of NPP's. The radiation monitoring program on LLW disposal site should be well prepared reflecting PA, site characteristics and regulation.

  • PDF

A study on the effect of material impurity concentration on radioactive waste levels for plans for decommissioning of nuclear power plant

  • Gilyong Cha;Minhye Lee;Soonyoung Kim;Minchul Kim;Hyunmin Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2489-2497
    • /
    • 2023
  • Co and Eu impurities in the SSCs are nuclides that dominantly influence the neutron-induced radioactive inventory in metal and concrete radwastes (radioactive wastes) during NPP decommission. The impurity concentrations provided by NUREG/CR-3474 were used for the practical range of Co and Eu impurity concentrations to be applied to the code calculations. Metal structures near the core were evaluated to be ILW (intermediate-level waste) for the whole range of Co impurity concentration, so the boundary line between ILW and LLW (low-level waste) has no change for the whole concentration range provided by NUREG/CR-3474. Also, the boundary line between VLLW (very low-level waste) and CW (clearance waste) in the concrete shield could alter a little depending on the Eu impurity concentration within the range provided by NUREG/CR-3474. From this work, it is found that the concentration of material impurities of SSCs gives no critical impact on determining radwaste levels.

Subtidal Zonation of the Cumacean Bodotria biplicata in the Surf Zone of Dolsando, Southern Korea (돌산도 쇄파대에 사는 쿠마류 Bodotria biplicata의 조하대 대상분포)

  • SUH Hae-Lip;KOO Young Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.39-45
    • /
    • 1997
  • Subtidal zonation of a cumacean Bodotria biplicata was investigated in the sandy shore surf zone of Dolsando, southern Korea. Three replicate samples were taken with a sledge net at three sites, such as the surface and bottom of 1 m depth and waters edge, at hourly intervals over the neap and spring tide cycles on January 1993 (n=225). B. biplicata, the most dominant cumacean in this area, exhibited peak density at the bottom while about $0.6\%$ of total catch was collected at the surface. Mean density during the neap tide cycle was slightly higher than that during the spring tide cycle. The depth of subtidal zone influenced the total catch of B. biplicata. The changes in density were related to the depth of subtidal zone rather than day-night cycle or ebb-flood tide. The results obtained in this study suggest that the diel vertical migration is not distinct. During both neap and spring tide cycles, B. biplicata attained a density maximum at the same level of about 90 cm below lower low water (LLW). It is likely, therefore, that this species performs shore- and seaward horizontal migration fortnightly. The speed and distance of migration may be directly related to the beach slope and tide range. Ontogenetic differences in subtidal distribution were observed. Juveniles and manca larvae tended to occur lower areas than the adults. Such differences may reduce intraspecific competition for diets.

  • PDF

Study on Dose Rate on the Surface of Cask Packed with Activated Cut-off Pieces from Decommissioned Nuclear Power Plant

  • Park, Kwang Soo;Kim, Hae Woong;Sohn, Hee Dong;Kim, Nam Kyun;Lee, Chung Kyu;Lee, Yun;Lee, Ji Hoon;Hwang, Young Hwan;Lee, Mi Hyun;Lee, Dong Kyu;Jung, Duk Woon
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.178-186
    • /
    • 2020
  • Background: Reactor pressure vessel (RV) with internals (RVI) are activated structures by neutron irradiation and volume contaminated wastes. Thus, to develop safe and optimized disposal plan for them at a disposal site, it is important to perform exact activation calculation and evaluate the dose rate on the surface of casks which contain cut-off pieces. Materials and Methods: RV and RVI are subjected to neutron activation calculation via Monte Carlo methodology with MCNP6 and ORIGEN-S program-neutron flux, isotopic specific activity, and gamma spectrum calculation on each component of RV and RVI, and dose rate evaluation with MCNP6. Results and Discussion: Through neutron activation analysis, dose rate is evaluated for the casks containing cut-off pieces produced from decommissioned RV and RVI. For RV cut-off ones, the highest value of dose rate on the surface of cask is 6.97 × 10-1 mSv/hr and 2 m from it is 3.03 × 10-2 mSv/hr. For RVI cut-off ones, on the surface of it is 0.166 × 10-1 mSv/hr and 2 m from it is 1.04 × 10-1 mSv/hr. Dose rates for various RV and RVI cut-off pieces distributed lower than the limit except the one of 2 m from the cask surface of RVI. It needs to adjust contents in cask which carries highly radioactive components in order to decrease thickness of cask. Conclusion: Two types of casks are considered in this paper: box type for very-low-level waste (VLLW) as well as low-level waste (LLW) and cylinder type for intermediate-level waste (ILW). The results will contribute to the development of optimal loading plans for RV and RVI cut-off pieces during the decommissioning of nuclear power plant that can be used to prepare radioactive waste disposal plans for the different types of wastes-ILW, LLW, and VLLW.