• Title/Summary/Keyword: LLC cells

Search Result 82, Processing Time 0.026 seconds

Protective Effects of the Fermented Laminaria japonica Extract on Oxidative Damage in LLC-PK1 Cells

  • Park, Min-Jung;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.227-233
    • /
    • 2013
  • This study investigated the protective effect of the butanol (BuOH) fraction from fermented Laminaria japonica extract (BFLJ) on AAPH-induced oxidative stress in porcine kidney epithelial cells (LLC-PK1 cells). L. japonica was fermented by Aspergillus oryzae at $35{\pm}1^{\circ}C$ for 72 h. Freeze-dried fermented L. japonica was extracted with distilled water, and the extracted solution was mixed with ethanol and then centrifuged. The supernatant was subjected to sequential fractionation with various solvents. The BuOH fraction was used in this study because it possessed the strongest antioxidant activity among the various solvent fractions. The BuOH fraction of fermented L. japonica had a protective effect against the AAPH-induced LLC-PK1 cells damage and increased cell viability while reducing lipid peroxidation formation and increased activities of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. The inhibitory effect of BFLJ on lipid peroxidation formation had a higher value of $0.11{\pm}0.01nmol$ MDA at $100{\mu}g/mL$ concentration in comparison with intact BuOH fraction showing $0.22{\pm}0.08nmol$ MDA at the same concentration. Furthermore, BFLJ treatment increased glutathione concentration. GSH concentration in the cell treated with BFLJ of $100{\mu}g/mL$ was $1.80pmol/L{\times}10^5cells$. These results indicate that BFLJ protects the LLC-PK1 cells against AAPH-induced cell damage by inhibiting lipid peroxidation formation and increasing antioxidant enzyme activities and glutathione concentration.

Shikonin Induced Apoptosis and Inhibited Angiogenesis on HSE Cells

  • Lee Soo-Jin;Kim Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.5
    • /
    • pp.1363-1369
    • /
    • 2005
  • Previously we have shown that shikonin has strong anti-tumor activities via inducing apoptosis and suppressing metastasis on LLC cells in vivo and in vitro. Here we have investigated anti-angiogenic potential of shikonin and its possible mechanism of action in HSE cells. Shikonin inhibited the proliferation of HSE cells in a concentration-dependent manner. It was shown that this proliferation inhibition was caused by apoptosis induced by shikonin via BrdU incorporation and Western blotting analysis. Shikonin treatment was caused that decrease of activation of caspases and cleavage of PARP. And shikonin induced that the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38. Moreover, shikonin showed anti-angiogenic activities inhibiting tube-like formation of HSE cells in vitro and vascular formation of LLC cells in vivo. These findings suggest that shikonin may a possible candidate not only anti-metastatic agent but also anti-angiogenic agent.

A Novel Monoclonal Antibody Induces Cancer Cell Apoptosis and Enhances the Activity of Chemotherapeutic Drugs

  • Xu, Heng;Tian, Yan-Na;Dun, Bo-Ying;Liu, Hai-Tao;Dong, Guang-Kuo;Wang, Jin-Hua;Lu, Shang-Su;Chen, Bo;She, Jin-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4423-4428
    • /
    • 2014
  • A novel monoclonal antibody (mAb), known as AC10364, was identified from an antibody library generated by immunization of mice with human carcinoma cells. The mAb recognized proteins in lysates from multiple carcinoma cell lines. Cell cytotoxicity assays showed that AC10364 significantly inhibited cell growth and induced apoptosis in multiple carcinoma cell lines, including Bel/fu, KATO-III and A2780. Compared with mAb AC10364 or chemotherapeutic drugs alone, the combination of mAb AC10364 with chemotherapeutic drugs demonstrated enhanced growth inhibitory effects on carcinoma cells. These results suggest that mAb AC10364 is a promising candidate for cancer therapy.

Inhibitory Effect of Mori Ramulus on Oxidative Stress Induced by High Glucose in LLC-$PK_1$ Cells (고농도 포도당에 노출된 마우스 신장상피세포에서 상지(桑枝)의 산화 스트레스 억제 효과)

  • Jang, Soo-Young;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.56-67
    • /
    • 2011
  • Objectives : Recent etiological studies show that oxidative stress might play a major role in the diabetes and its complications. Mori Ramulus (MR) has been known to have antioxidative, anti-inflammatory and antidiabetic effects. The methanol extract of MR was tested for its effectiveness in LLC-PK1 cells exposed to high glucose. Methods : The cytoprotective effect of MR was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of ${\cdot}O_2^-$ by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), NO by 4,5-diaminofluorescein (DAF-2), $ONOO^-$ by dihydrorhodamine 123 (DHR 123) in the high glucose -treated LLC-$PK_1$ cells. Western blotting was performed using anti-AGE, anti-RAGE, anti-MAPKs(ERK1/2, JNK, p38), anti-PI3K, anti-Akt, and anti-NF-${\kappa}$B (p50, p65) respectively. Results : MR extract reduced cell death and inhibited the generation of ${\cdot}O_2^-$, NO, $ONOO^-$ in the high glucose-treated LLC-$PK_1$ cells. MR inhibited the expression of AGE, RAGE, MAPKs, PI3K, and Akt by means of decreasing NF-${\kappa}$B activation. MR also inhibited NF-${\kappa}$B activation itself. Conclusions : These results indicate MR has cytoprotective, antioxidative, and anti-inflammatory effects. Therefore it is suggested that MR might prevent and cure diabetes and its complications.

Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells

  • Lee, Hye Lim;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.227-231
    • /
    • 2017
  • Background: Ginsenosides are active components of Panax ginseng that exert various health benefits including kidney protection effect. The medicinal activity of ginsenosides can be enhanced by modulating their stereospecificity by heat processing. Ginsenosides Rk2 and Rh3 represent positional isomers of the double bond at C-20(21) or C-20(22). Methods: The present study investigated the kidney-protective effects of ginsenosides Rk2 and Rh3 against cisplatin, a platinum based anticancer drug, induced apoptotic damage in renal proximal LLC-PK1 cells. Results: As a result, ginsenoside Rh3 shows a stronger protective effect than that shown by Rk2. Cisplatin-induced elevated protein levels of phosphorylated c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and cleaved caspase-3 decreased after cotreatment with ginsenoside Rh3. The increase in the percentage of apoptotic LLC-PK1 cells induced by cisplatin treatment also significantly reduced after cotreatment with ginsenoside Rh3. Conclusion: These results demonstrate that inhibition of the JNK and ERK mitogen-activated protein kinase signaling cascade plays a critical role in mediating the renoprotective effect of ginsenoside Rh3.

The Effect of Patriniae Radix on the Oxidative Stress and the NF-${\kappa}B$ Signaling in Mouse LLC-$PK_1$ Cell (Mouse의 신장상피세포에서 패장(敗醬)추출물이 산화 스트레스 및 NF-${\kappa}B$ signaling에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Choi, Gyu-Ho;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.153-165
    • /
    • 2010
  • Objectives : The aims of this study were to investigate the cytoprotective, antioxidative and inflammation genes inhibitory effects of Patriniae Radix on the mouse LLC-$PK_1$ cells (renal epithelial cells). Methods : The cytoprotective effect of Patriniae Radix was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The antioxidative effect was measured in terms of generation amount of superoxide anion radical (${\cdot}{O_2}^-$) by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA), nitric oxide (NO) by 4,5-diaminofluorescein (DAF-2), peroxynitrite ($ONOO^-$) by dihyldrorhodamine 123 (DHR 123) and prostaglandin $E_2$ ($PGE_2$) by $PGE_2$ immunoassay on $H_2O_2$-treated LLC-$PK_1$ cells. For measuring of inflammation genes inhibitory effects, western blot was performed to detect IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$ and VCAM-1 protein level in cytosol fractions from LLC-$PK_1$ cells. Results : Patriniae Radix extract reduced the $H_2O_2$-induced cell death and inhibited the amount of $H_2O_2$-induced ${\cdot}{O_2}^-$, NO, $ONOO^-$, $PGE_2$ generation dose-dependently on the mouse LLC-$PK_1$ cells in vitro. Also Patriniae Radix extract inhibited the expression of IKK-$\alpha$, phospho-$I{\kappa}B-\alpha$, COX-2, iNOS, IL-$1\beta$ and VCAM-1 genes dose-dependently by means of decreasing activation of NF-${\kappa}B$. Conclusions : According to above results, it was identified that Patriniae Radix had the cytoprotective, antioxidative and inflammation genes inhibitory effects. So it was suggested that Patriniae Radix would be effective to the treatment for the inflammatory process and inflammation-related diseases.

Protective effect of Korean Red Ginseng against FK506-induced damage in LLC-PK1 cells

  • Lee, Dahae;Kang, Ki Sung;Yu, Jae Sik;Woo, Jung-Yoon;Hwang, Gwi Seo;Eom, Dae-Woon;Baek, Seung-Hoon;Lee, Hye Lim;Kim, Ki Hyun;Yamabe, Noriko
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.284-289
    • /
    • 2017
  • Background: Compound FK506 is an immunosuppressant agent that is frequently used to prevent rejection of solid organs upon transplant. However, nephrotoxicity due to apoptosis and inflammatory response mediated by FK506 limit its usefulness. In this study, the protective effect of Korean Red Ginseng (KRG) against FK506-induced damage in LLC-PK1 pig kidney epithelial cells was investigated. Methods: LLC-PK1 cells were exposed to FK506 with KRG and cell viability was measured. Western blotting and RT-PCR analyses evaluated protein expression of MAPKs, caspase-3, and KIM-1. TLR-4 gene expression was assessed. Caspase-3 activities were also determined. The number of apoptotic cells was measured using an image-based cytometric assay. Results: The reduction in LLC-PK1 cell viability by $60{\mu}M$ FK506 was recovered by KRG cotreatment in a dose-dependent manner. The phosphorylation of p38, p44/42 MAPKs (ERK), KIM-1, cleaved caspase-3, and TLR-4 mRNA expression was increased markedly in LLC-PK1 cells treated with $60{\mu}M$ FK506. However, with the exception of p-ERK, elevated levels of p-p38, KIM-1, cleaved caspase-3, and TLR-4 mRNA expression were significantly decreased after cotreatment with KRG. Activity level of caspase-3 was also attenuated by KRG cotreatment. Moreover, image-based cytometric assay showed that apoptotic cell death was increased by $60{\mu}M$ FK506 treatment, whereas it was decreased after cotreatment with KRG. Conclusion: Taken together, these results suggest that the molecular mechanism of KRG in the FK506-induced nephrotoxicity may lead to the development of an adjuvant for the inhibition of adverse effect FK506 in the kidney.

Effects of Polygoni Cuspidati Radix on the $H_2O_2$-treated LLC-$PK_1$ Cell's Redox Status and NF-${\kappa}B$ Signaling (호장근(虎杖根)이 $H_2O_2$에 노출된 LLC-$PK_1$ 세포의 Redox Status 및 NF-${\kappa}B$ Signaling에 미치는 영향)

  • Kim, Sol-Ri;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.483-490
    • /
    • 2012
  • This study was designed to identify the effects of Polygoni cuspidati Radix(PCR) on the generation of superoxide anion radicals (${\cdot}O_2{^-}$), nitric oxide (NO), peroxynitrite ($ONOO^-$) in the renal epithelial cells of mouse(LLC-$PK_1$). The effects of PCR on the expression of inflammation-related proteins, IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$, VCAM-1, were examined by western blotting. For this study, the fluorescent probes, namely dihydrorhodamine 123 (DHR 123), 2',7'-dichloro dihydrofluorescein diacetate (DCFDA), 4,5-diaminofluorescein (DAF-2) were used. Protein expression levels of IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, NF-${\kappa}B$ (p50, p65), COX-2, iNOS, IL-$1{\beta}$, VCAM-1 were assayed by western blot. PCR reduced $H_2O_2$-induced cell death dose-dependently. It inhibited the generation of ${\cdot}O_2{^-}$, NO, $ONOO^-$ and $PGE^2$ in the $H_2O_2$-treated LLC-PK1 cells in vitro. PCR inhibited the espression of IKK-${\alpha}$, phospho-$I{\kappa}B-{\alpha}$, COX-2, iNOS, IL-$1{\beta}$ and VCAM-1 genes by means of decreasing the NF-${\kappa}B$ activation. These results suggest that PCR is an effective NO, ${\cdot}O_2{^-}$, $ONOO^-$ scavenger, and this substance recommended to be applied in treatment for the inflammatory process and inflammation-related disease.

Effect of Nephrotoxicants on $\alpha$-Methylglucose Uptake in LLC-$PK_1$ (LLC-$PK_1$을 이용한 신독성 물질들의 $\alpha$-methyl glucose uptake에 미치는 영향의 평가)

  • Seo, Kyung-Won;Kim, Hyo-Jung;Chung, Se-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.9 no.1_2
    • /
    • pp.25-35
    • /
    • 1994
  • Many nephrotoxic agents exert their effect primarily on the cells of the proximal tubules. We used the LLC-$PK_1$, kidney epithelial cell line as a model system for studies on nephrotoxicity and investigated whether the uptake of $\alpha$-methylglucose($\alpha$-MG) could serve as a parameter to assess effects of nephrotoxicants on the functional integrity of the cells at an early time of toxicity. The enzyme leakage test which has been used to be as a conventional cytotoxic parameter in vitro, was conducted to compare with $\alpha$-MG uptake. Treatment with cisplatin for 24 and 48 hours significantly increased activities of lactate dehydrogenase and $\gamma$-glutamyltransferase in culture medium at a concentration of 50$\mu$M. However, above 100$\mu$M of concentration, activities of these enzymes in media were dramatically decreased by cisplatin. These observations indicate that cisplatin has direct inhibitory effect on the activities of these enzymes and make it doutful to use enzyme leakage test to demonstrate damage of kidney cells by chemicals such as cisplatin over the appropriate range of concentration. Cisplatin inhibited $\alpha$-MG uptake at a low concentration which enzymes were not leaked. Also cadmium chloride and mercuric chloride which are acutely nephrotoxic in vivo, significantly inhibited $\alpha$-MG uptake at a low concentration. These results indicate that the uptake of $\alpha$-methylglucose in LLC-$PK_1$cell line is a useful biomarker for the study of nephrotoxicity.

  • PDF

The Butanol Fraction of Bitter Melon (Momordica charantia) Scavenges Free Radicals and Attenuates Oxidative Stress

  • Kim, Hyun Young;Sin, Seung Mi;Lee, Sanghyun;Cho, Kye Man;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • To investigate radical scavenging effects and protective activities of bitter melon (Momordica charantia) against oxidative stress, in vitro and a cellular system using LLC-$PK_1$ renal epithelial cells were used in this study. The butanol (BuOH) fraction of bitter melon scavenged 63.4% and 87.1% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals at concentrations of 250 and $500{\mu}g/mL$, respectively. In addition, the BuOH fraction of bitter melon effectively scavenged hydroxyl radicals (${\cdot}OH$). At all concentrations tested, the scavenging activity of the BuOH fraction was more potent than that of the positive control, ascorbic acid. Furthermore, under the LLC-$PK_1$ cellular model, the cells showed a decline in viability and an increase in lipid peroxidation through oxidative stress induced by pyrogallol, a generator of superoxide anion ($O_2{^-}$). However, the BuOH fraction of bitter melon significantly and dose-dependently inhibited cytotoxicity. In addition, 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite ($ONOO^-$) formed by simultaneous releases of nitric oxide and $O_2{^-}$, caused cytotoxicity in the LLC-$PK_1$ cells while the BuOH fraction of bitter melon ameliorated oxidative damage induced by $ONOO^-$. These results indicate that BuOH fraction of bitter melon has protective activities against oxidative damage induced by free radicals.