• 제목/요약/키워드: LIX84I

검색결과 3건 처리시간 0.016초

Recovery of Palladium from a Mixture of Pt, Pd and Rh by Solvent Extraction

  • Kim, berly S. Svalstad;Kim, Nam-Soo;Kenneth N. Han
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.482-488
    • /
    • 2001
  • Platinum group metals (pgm) are useful to many industries such as chemical, dental and medical, petroleum, refining, electrical and electronic, and automotive. Researchers at the South Dakota School of Mines and Technology and PGM Recovery Ltd. have developed jointly an environmentally sound and metallurgically efficient process for extracting these metals from secondary sources. Once these metals have been dissolved in the leach liquor, the individual metals mainly platinum, palladium, and rhodium, should be separated in order to recover the individual metals with high purity. During this investigation, solvent extraction has been chosen as the method used to achieve the separation and extraction of platinum, palladium, and rhodium from the leach liquor. There were three solutions used throughout this procedure: 1) Synthetic solution (200 ppm Pt 80 ppm Pd 20 ppm Rh; 300 ppm Pt, 180 ppm Pd 50 ppm Rh), and 2) Auto catalyst leach liquors (100 ppm Pt, 30 ppm Pd, 20 ppm Rh). The solvents investigated included Lix 84(2-hydroxy-5-nonylacetonphenone oxime in a mixture with 5-dodecylsalicyloxime), Lix 84-I, ACORGA CLX-50 (diester of pyridine 3,5 dicarboxylic acid), and di-hexyl sulfide. The extraction values achieved using ACORGA CLX-50, Lix 84, and Lix 84-I were respectively Pt (25%, 0% 0%), Pd (100%, 99.8%, 95.3%), and Rh (99.1%, 35.5%, 4.25%). The stripping processes for the Lix 84, and Lix 84-I were proven to be more involved than others. The solutions were required to be simultaneously heated and stirred. The percentages acquired through these processes yielded unsatisfactory results. The stripping procedure for the ACORGA CLX-50 was easier to execute, yet the percentage recovered from this process was also unsatisfactory. Overall the di-hexyl sulfide has proved to be the most successful organic for this procedure. The average percent extracted for palladium was excellent with 99.9% - 100% with very little Platinum and rhodium extracted. The ability of stripping palladium in ammonia solution was also found to be excellent.

  • PDF

Recovery of Nickel from Spent Electroless Nickel Plating Baths

  • Tanaka, Mikiya;Kobayashi, Mikio;Seki, Tsutomu
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.270-274
    • /
    • 2001
  • With Increasing importance of electroless nickel plating technology in many fields such as electronic and automobile industries, the treatment of the spent baths is becoming a serious problem. These spent baths contain iron and zinc as impurities, organic acids as complexing reagents, and phosphonate ions as oxidized species of tile reducing reagent. as well as several grams per liter of nickel. The spent baths are currently treated by conventional precipitation method. but a mettled with no sludge generation is desired. This work aims at establishing a recycling process of nickel from tile spent baths using solvent extraction. Extraction behaviors of nickel. iron. and zinc in various 쇼pes of real spent baths are investigated as a function of pH using LIX841, di (2-ethylhexyl)phosphoric acid (D2EHPA), and PC88A as tile extractants. Nickel is extracted by LIX84I at the equilibrium pH of more than 6 with high efficiency. For the weakly acid baths. iron and zinc are extracted by D2EHPA or PC88A without adjusting the pH of the baths leaving nickel in the aqueous phase. Stripping of nickel from LIX84I with sulfuric acid is also investigated. It is shown that concentrated nickel sulfate solution (> 100 ㎏-Ni/㎥) is obtained. This solution can be reused in the electroless plating process. Based on these findings, flow sheets for recovering nickel from the spent baths are proposed.

  • PDF

망간단괴 매트상 모의 침출용액으로부터 용매추출-전해채취 공정에 의한 구리의 회수 (Recovery of Copper from Synthetic Leaching Solution of Manganese Nodule Matte by Solvent Extraction-electrowinning Process)

  • 김현호;박경호;남철우;윤호성;김민석;김철주;박상운
    • 자원리싸이클링
    • /
    • 제25권1호
    • /
    • pp.60-67
    • /
    • 2016
  • 망간단괴 매트상 침출액 조성으로 제조 된 모의 용액(Cu 10.5 g/L, Co 2.0 g/L, Ni 15.0 g/L, Fe 0.2 g/L)으로부터 용매추출-전해채취 연속공정을 통해 구리를 분리-회수하기 위하여 규모 확대용 용매추출장치인 6단 혼합-침강기(mixer-settler : 추출 4단, 탈거 2단)와 전해조를 이용하였다. 용매추출의 경우 추출제로는 40%(v/v)의 LIX 84I, 탈거용액은 전해폐액(Cu 35.0 g/L, $H_2SO_4$ 180 g/L)을 사용하였으며 추출단과 탈거단의 O/A 비는 각각 1/1과 1.5/1 이었다. 용매추출공정의 구리의 추출율과 탈거율은 각각 96.7%와 91.0%이었으며 탈거액(전해액)의 구리, 니켈, 코발트 그리고 철의 농도는 각각 50~51 g/L, 25 ppm, 5 ppm 그리고 3 ppm 이었다. 전해채취공정은 $1.50A/dm^2$의 전류밀도에서 98.9%의 전류효율을 나타내었으며, 99.833% 순도의 금속 구리를 얻었다.