• Title/Summary/Keyword: LITTERFALL

Search Result 64, Processing Time 0.025 seconds

A Comparison of Litterfall Dynamics in Three Coniferous Plantations of Identical Age under Similar Site Conditions

  • Jeong, Jae-Yeob;Kim, Choon-Sig;An, Hyun-Chul;Cho, Hyun-Seo;Choo, Gap-Chul
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.97-102
    • /
    • 2009
  • This study was carried out to evaluate litterfall dynamics in three adjacent coniferous tree plantations (larch: Larix leptolepis; red pine: Pinus densiflora; rigitaeda pine: P. rigitaeda) planted in the same year (1963), and growing under similar environmental conditions in the Sambong Exhibition Forests, Hamyang-gun, Gyeongsangnam-do. Litter was collected monthly between July 2006 and June 2008. Needle, broad leaf and total litter inputs followed a similar monthly pattern in the three coniferous plantations. The amounts of needles, flowers, and miscellaneous litter were significantly lower in the larch than in the two pine plantations, while branch litter was significantly higher in the larch than in the two pine plantations. Average total litterfall for two years was significantly higher for the pine (5,475 kg $ha^{-1}\;yr^{-1}$ for red pine and 5,290 kg $ha^{-1}\;yr^{-1}$ for rigitaeda pine) plantations than for the larch (3,953 kg $ha^{-1}\;yr^{-1}$ plantation. Needle litter comprised about 73.1% of total litterfall for the rigitaeda pine, 70.8% for the red pine and 62.9% for the larch plantations. Our results demonstrate that litterfall inputs can be affected by tree species.

Litterfall, decomposition, and nutrient dynamics of litter in red pine (pinus densiflora) and chinese thuja (thuja orientalis) stands in the limestone area (石灰巖地域 소나무림과 측백나무림의 落葉生産, 分解 및 窒素와 燐의 動態)

  • Mun, Hyeong-Tae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.15 no.2
    • /
    • pp.147-155
    • /
    • 1992
  • Litterfall, decomposition, and dynamics of n and p in decomposing litter were investigated for 2 years in red pine ( pinus densiflora) and chinese thuja( thuja orientalis)stands in the limestone area. Average litterfall in red pine and chinese thuja stands were 4, 535kgDM ha-1 yr-1 and 5, 010 kgDM ha-1 yr-1, respectively. Seasonal litterfall in red pine and chinese thuja stands showed peaks in November. concentrations of N and P in the needle litter were lowest in the winter when the greast litterfall occurred, and highest in the summer when the least litterfall occurred. However, those in chinese thuja scale leaf litter showed litter seasonal variation.amount of N and P returned to the forest floor through litterfall were 29.02kgN ha-1 yr-1 , 2.81 kg P ha-1 yr-1 for red pine stand, and 31.06 kg N ha-1 yr-1 , 2.86kgP ha-1 yr-1 for chinese thuja stand, respectively. After 21 mounts elapsed, needle and chinese thuja scale leaf litterbags lost 34.8% and 32.5% of the initial weight, respectively. N concentrations in the docomposing needle and chines thuja scale leaf litter decreased by 19% and 30%, respectively, after 1 month elapsed, and then gradually increased to exceed the initial concentration after 9 months elapsed and then gradually increased to exceed the initial concentration after 9 months elapsed in both of them, P in needle and chines thuja scale leaf litter decreased by 54% and 57% of the initial concentration, respectively, after 1 month elapsed. unlike N, P concentration in the decomposing litter did not exceed that of initial ones. Neyt immobilization period of N and P in decomposing litter did not occur over the study period.

  • PDF

Effects of Nitrogen and Phosphorus Fertilization on Nutrient Dynamics and Litterfall Production of Pinus rigida and Larix kaempferi (질소와 인 시비가 리기다소나무와 낙엽송의 낙엽 생산량 및 양분 동태에 미치는 영향)

  • Lee, Im-Kyun;Son, Yow-Han
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.205-212
    • /
    • 2006
  • Effects of nitrogen and phosphorus fertilization on nutrient dynamics and litterfall production were determined in adjacent 41-year-old plantations of Pinus rigida Miller and Larix kaempferi Gordon on a similar soil in Yangpyeong, Gyeongggi Province. Litterfall production were significantly different among sampling dates and between the tree species, whereas it was not significantly different among the treatments. Total annual litterfall production was 6,377 kg/ha for P. rigida and 4,778 kg/ha for L. kaempferi, respectively. Litterfall nutrient concentrations of L. kaempferi were higher than those of P. rigida. For both tree species, litterfall nutrient concentrations were highest in summer when the least litterfall production occurred, and lowest in late-autumn when the greatest litterfall production occurred, except for Ca in the L. kaempferi stand. The amount of total organic matter in the forest floor of P. rigida and L. kaempferi plantations were 24,296 kg/ha and 10,763 kg/ha, respectively. Forest floor N and P contents were 126, 10 kg/ha for P. rigida and 102, 8 kg/ha for L. kaempferi, respectively.

The Effects of Thinning on Fine Root Distribution and Litterfall in a Pinus koraiensis Plantation

  • Park, Byung-Bae;Lee, Im-Kyun;Yang, Hee-Moon
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.159-165
    • /
    • 2009
  • The purpose of this study was to investigate the effects of thinning on fine root biomass and vertical distribution. and litterfall amount in a 50 year old Pinus koraiensis plantation in Chuncheon, Kangwon Province. Fine root (< 2 mm in diameter) biomass ($367\;g/m^2$) in the site 'OC_75', thinning once in 1975, was 68% of those in the site 'CON', no thinning after planting, and in the site 'TC_00', thinning twice in 1975 and 2000. There were no significant differences of dead roots among treatments. Diameter $0{\sim}1\;mm$ roots were vertically decreased only in the TC_00 site. The litterfall was very similar between OC_75 ($5.2\;Mg\;ha^{-1}\;yr^{-1}$) and TC_00 ($4.7\;Mg\;ha^{-1}\;yr^{-1}$), but the composition of litterfall was different: The proportion of leaves and branches was 80% and 13% in OC_75 and 56% and 36% in TC_00, respectively. Reduction of P. koraiensis density by thinning decreased leaf litter as well as fine roots of P. koraiensis, but increased fine roots production by neighboring understory plants offset the reduction of fine roots of P. koraiensis. We suggest that belowground as well as aboveground responses, including both over- and understory vegetation, should be considered to measure the responses of trees in thinned forest ecosystems.

Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

  • Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.99-109
    • /
    • 2012
  • Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there have been few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach to measure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, and the mass on the forest floor. To assess the status of litter dynamics, the decay rate (k) was estimated from a litterbag experiment, and removal rates ($k_i$) were determined from mass balance on the forest floor at 21 sites on three mountains in South Korea. The $k_3$ (organic mass ratio of $O_i$ and $O_e+O_a$ + A horizons in November) values in an equilibrium state in South Korea were within the range of $k{\pm}0.174$ when considering the annual variation of litterfall production. This study also suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes on the forest floor.

Effect of Fertilization on Litterfall Amounts in a Quercus acutissima stand (시비가 상수리나무 임분의 낙엽낙지량에 미치는 영향)

  • Park, Jin Young;Kim, Choonsig;Jeong, Jaeyeob;Byun, Jae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.97 no.6
    • /
    • pp.582-588
    • /
    • 2008
  • This study was carried out to evaluate litterfall amounts in a 28-year old Quercus acutissima stand at various levels of fertilization. The levels of fertilization were control, 3:4:1 (100 kg N/ha, 130 kg P/ha, 33 kg K/ha), 3:8:1, 3:4:2, 6:4:1, and 2:2:1, respectively. Fertilizers were applied for 3 years. Litterfall amounts following 3-year fertilization were significantly different among various levels of fertilization. Leaf litter was significantly higher (P<0.05) in 3:4:1 (4,015 kg/ha/yr) than in 3:8:1 treatments (2,874 kg/ha/yr), whereas other treatments showed no significant differences (P>0.05). Total litterfall amounts throughout the study period were 4,206 kg/ha/yr in 3:8:1, 4,992 kg/ha/yr in 2:2:1, 5,372 kg/ha/yr in 6:4:1, 5,456 kg/ha/yr in control, 5,840 kg/ha/yr in 3:4:1 and 6,015 kg/ha/yr in 3:4:2 treatments, respectively. Proportion of leaf litter was more than 66% of total litterfall in 3:4:1, 6:4:1, and 3:8:1 treatments compared with 61% in the control. These results indicated that litterfall amounts in a Q. accutissma stand were affected by various levels of fertilization.

Nutrient Dynamics in Litterfall and Decomposing Leaf Litter at the Kwangneung Deciduous Broad-Leaved Natural Forest (광릉 천연활엽수림의 낙엽낙지와 낙엽분해에 따른 양분동태)

  • Choonsig Kim;Jong-Hwan Lim;Joon Hwan Shin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.87-93
    • /
    • 2003
  • Litterfall and litter decomposition represent a major contribution to the carbon and nutrient inputs in a forest ecosystem. We measured litterfall quantity and nutrient dynamics in decomposing litter for two years at the Kwangneung broadleaf natural forest (DK site) in Korea. Litterfall was collected in circular littertraps (collecting area : 0.25 $m^2$) and mass loss rates and nutrient release patterns in decomposing litter were estimated using the litterbag technique employing 30 cm ${\times}$ 30 cm nylon bags with 1.5 mm mesh size. Total annual litterfall was 5,627 kg/ha/yr and leaf litter accounted for 61 % of the litterfall. The leaf litter quantity was highest in Quercus serrata, fallowed by Carpinus laxiflora and C. cordata, etc., which are dominant tree species in the site. Mass loss from decomposing leaf litter was more rapid in C. laxiflora and C. cordata than in Q. serrata litter. About 77% of C. laxiflora and 84% of C. cordata litter disappeared, while about 48% in Q. serrata litter lost over two years. Lower mass loss rates of Q. serrata litter may be attributed to the difference of substrate quality such as lower nutrient concentrations compared with the other litter types. Nutrient concentrations (N, P, Mg) of three litter types except for potassium (K) increased compared with initial nutrient concentrations of litter over the study period. Compared with Q. serrata litter, nutrients (N, P, K, Ca, Mg) in C. laxiflora and C. cordata litter were released rapidly. The results suggest that litter mass loss and nutrient dynamic processes among tree species vary considerably in the same site conditions.

Carbon storage, Litterfall and Soil $CO_2$ Efflux of a Larch(Larix leptolepis) Stand

  • Kim, Choon-Sig
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.191-196
    • /
    • 2006
  • This study was carried out to evaluate soil carbon cycling of a 36-year-old larch (Larix leptolepis) stand in Korea. The aboveground and soil organic carbon storage, litterfall, and soil respiration rates were measured over twoyear periods. The estimated aboveground biomass carbon storage and increment were 4220 gC $m^{-2}$ and 150 gC $m^{-2}\;yr^{-1}$, respectively. Mean organic carbon inputs by needle and total litterfall were 118 gC $m^{-2}\;yr^{-1}$ and 168 gC $m^{-2}\;yr^{-1}$, respectively. The aboveground carbon increment of the stand was similar to the annual input of carbon from total litterfall. The soil respiration rates correlated exponentially with the soil temperature at a depth of 20 cm ($R^2$ = 0.86). In addition, the exponential regression equation indicated a relatively strong positive relationship between the soil respiration rates and soil temperature, while there was no significant relationship between the soil respiration rates and the soil moisture content. The annual mean and total soil respiration rates were 0.40 g $CO_2\;m^{-2} h^{-1}$ and 3010 g $CO_2\;m^{-2}\;yr^{-1}$ over the two-year study period, respectively.

Carbon and nitrogen status in litterfall of a red pine stand with varying degrees of damage from pine wilt disease

  • Kim, Choon-Sig;Jeong, Jae-Yeob;Cho, Hyun-Seo;Lee, Kwang-Soo;Park, Nam-Chang
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.215-222
    • /
    • 2011
  • We evaluated the carbon (C) and nitrogen (N) status of litterfall in a natural red pine (Pinus densiflora) stand damaged by pine wilt disease in Jinju City, which was one of the areas severely affected by the disease in Korea. A significant correlation (P < 0.05) was found between tree density and basal area and the C and N status of litterfall components, but C and N status was not correlated with mean diameter at breast height in the pine wilt disease stands. Needle-litter C and N concentrations were linearly related (P < 0.05) to basal area in pine wilt disease stands. Needle-litter C concentration decreased with a decrease in damage intensity due to pine wilt disease, whereas litter N concentration increased with an increase of basal area in pine wilt disease stands. The linear regression equations developed for litterfall C and N inputs were significant (P < 0.05), with basal area accounting for 50-86% of the variation, except for cone and flower litter. The results indicated that the incidence of pine wilt disease could impact the quality and quantity of C and N in litterfall of pine stands suffering from pine wilt disease.

Forest Floor Biomass, Litterfall and Physico-chemical Properties of Soil along the Anthropogenic Disturbance Regimes in Tropics of Chhattisgarh, India

  • Oraon, P.R.;Singh, Lalji;Jhariya, Manoj Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.5
    • /
    • pp.359-375
    • /
    • 2018
  • The long term ecological effects have been reported in natural forest ecosystem due to various anthropogenic disturbances, especially in tropics of the world. The present study was carried out in the sanctuary area of central India to assess the changes on litter biomass, litterfall pattern and soil attributes under different disturbance regimes. The study area includes three forest circles i.e., Bhoramdeo, Jamunpani and Salehwara each comprising three disturbances regimes viz., high, medium and low severity of biotic pressure. A noticeable variation and impact were recorded in different sites. The impact varies significantly from least disturbed sites to highly disturbed sites across the circle and among different disturbances level. The seasonal mean total forest floor biomass across the forest circles varied from 2.18 to $3.30t\;ha^{-1}$. It was found highest under lightly disturbed site and lowest under heavily disturbed site. Total litterfall varied from 5.11 to $7.06t\;ha^{-1}\;yr^{-1}$ across the forest circle. Lowest litterfall was recorded at heavily disturbed site while highest in lightly disturbed site. Annual turnover of litter varied from 69-73% and the turnover time ranged between 1.37-1.45 years. The turn over time was higher for heavily disturbed site and lower for lightly disturbed site. The heavily disturbed site of all the circle showed the sandy loam soil texture, whereas moderately and lightly disturbed site comprised of sandy loam, sandy clay loam and clay soil texture, respectively. The bulk density decreases from heavily disturbed site to lightly disturbed site and the pH of soils ranged from 5.57-6.89 across the circle. Across the circle the total soil nitrogen ranged from 0.12-0.21%, phosphorus from 10.03-24.00 kg and Potassium from $139.88-448.35kg\;ha^{-1}$, respectively. Our results demonstrate that anthropogenic disturbances regime significantly influences forest floors in terms of mass, composition and dynamics along with litterfall rate and soil properties.