• Title/Summary/Keyword: LIM 방식 자기부상철도

Search Result 2, Processing Time 0.022 seconds

Development of the Track System for a LIM Type Maglev (LIM 방식 자기부상철도의 궤도시스템 개발)

  • Yeo, In-Ho;Kim, Dong-Seok;Jang, Seung-Yup;Hwang, Sung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.800-805
    • /
    • 2009
  • This paper proposes the track system with twin block sleeper for a LIM type maglev railroad. Because a LIM type maglev railroad is expected to be constructed in inner city, social costs can be required under construction. Accordingly, superstructure using precast plate was adopted and twin block sleeper which can be constructed together with precast plate was developed to reduce the construction period. To examine the structural safety of the proposed track system with twin block sleeper, the finite element analyses and the laboratory experiments were performed. Also, the workability of the proposed track system was investigated through the construction simulation test and construction experience in test bed.

Magnetic Levitation Control through the Introduction of Bogie Pitch Motion into a Control Law (대차 피치운동을 반영한 흡인식 자기부상제어)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Jo, Jeong-Min;Lim, JaeWon;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • The uneven reaction surface profile facing the lift magnets in attractive Maglev vehicles naturally brings about pitch motion of the bogie. In particular, in the placement configuration of the long stator of the linear synchronous motor (LSM) on the track for high-speed propulsion, surface irregularities and the offsets between the stator packs create measurable airgaps, i.e., the clearance between the magnet and the stator, with discontinuously extreme values, resulting in bogie pitch motion. This occurs because the airgap velocities and accelerations derived by the differentiations of the measured air-gaps are used to determine the voltages applied to the magnets. This paper incorporates bogie pitch motion into a control law for each magnet controller to reduce the variations in both the airgap and the pitch angle. The effectiveness of the proposed method is analyzed using a full-scale Maglev vehicle running over a test track.