• 제목/요약/키워드: LILW

검색결과 87건 처리시간 0.024초

중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구 (The Study for Reducing the Borrowing Cost for LILW Disposal)

  • 김범인;김창락
    • 방사성폐기물학회지
    • /
    • 제12권2호
    • /
    • pp.89-96
    • /
    • 2014
  • 원자력발전소 및 산업계에서 발생하는 중 저준위방사성폐기물을 처분하기 위한 처분장이 2014년경 준공될 것으로 예상된다. 방사성폐기물 처분을 위해서는 물리적인 처분시설의 확보도 중요할 뿐만 아니라 발생자와 처분사업자 등 각종 이해관계자들이 모두 수긍할 수 있는 비용부과체계 마련도 중요하다. 우리나라의 처분비용은 해외의 다른 국가에 비하여 높은 편에 속하며 이는 폐기물 발생자와 처분사업자에게 많은 부담을 주고 있다. 우리나라의 처분비용이 높은 이유는 처분장 확보를 위한 사회적 비용 또는 건설비가 다른 국가에 비하여 상대적으로 높은 이유도 있겠으나, 처분장 건설을 위해 조달한 비용에서 발생한 금융비용이 보다 큰 요인으로 작용하고 있다. 본 연구에서는 처분사업의 지속가능한 사업체계 마련을 위해 비용 구조를 분석함으로서 처분비용 중 금융비용을 낮추기 위한 방안을 모색하고자 한다.

$\cdot$저준위방사성폐기물처분시설 인허가심사 방안 (Licensing Review Scheme for Low and Intermediate Level Radioactive Waste Disposal Facility)

  • 전제근;정승영;장재권;이관희;박원재;박상훈
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.283-289
    • /
    • 2003
  • 중ㆍ저준위방사성폐기물관리시설의 안전심사체계의 확보를 위하여 미국, 일본, 프랑스 등 국외방사성폐기물관리 안전심사체계와 국내 인허가 심사체계 및 기술기준의 개발현황을 살펴보았다. 국내 방사성폐기물관리시설의 인허가는 원자력 관계법령에 따라 전체 5-6단계에 걸쳐 이행되며, 원자력법규와 기존의 원자력발전소 건설허가 심사기간을 참조할 때 건설ㆍ운영허가에 소요되는 기간은 총 32개월로 추정된다. 방사성폐기물의 안전관리를 위해 현재까지 전체 15건의 과기부고시를 개발하여 운용하고 있으며, 2005년까지 5건의 기술기준을 신규 개발 완료할 예정이다.

  • PDF

Development of Reference Scenarios Based on FEPs and Interaction Matrix for the Near-surface LILW Repository

  • Lee, Dong-Won;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.539-546
    • /
    • 2001
  • Systematic procedure of developing radionuclide release scenarios was established based on FEP list and Interaction Matrix for near-surface LILW repository. FEPs were screened by experts'review in terms of domestic situation and combined into scenarios on the basis of Interaction Matrix analysis. Under the assumption of design scenario, The system domain was divided into three sections: Near-field, Far-field and Biosphere. Sub-scenarios for each section were developed, and then scenarios for entire system were built up with sub-scenarios of each section. Finally, sixteen design scenarios for near-surface repository were evaluated A reference scenario and other noteworthy scenarios were selected through experts'scenario screening.

  • PDF

Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants (NPP) in Kenya

  • Shadrack, A.;Kim, C.L.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.37-47
    • /
    • 2013
  • This paper describes basic plans for the development of a radioactive waste disposal facility with the introduction of Nuclear Power Plants (NPPs) for Kenya. The specific objective of this study was to estimate the total projected waste volumes of low- and intermediate-level radioactive waste (LILW) expected to be generated from the Kenyan nuclear power programme. The facility is expected to accommodate LILW to be generated from operation and decommissioning of nuclear power plants for a period of 50 years. An on-site storage capacity of 700 $m^3$ at nuclear power plant sites and a final disposal repository facility of more than 7,000 $m^3$ capacity were derived by considering Korean nuclear power programme radioactive waste generation data, including Kori, Hanbit, and APR 1400 nuclear reactor data. The repository program is best suited to be introduced roughly 10 years after reactor operation. This study is important as an initial implementation of a national LILW disposal program for Kenya and other newcomer countries interested in nuclear power technology.

Effect of the Repository Configuration on Radionuclide Transport with the Multi-compartment Model for the LILW Repository Performance

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak;Joonhong Ahn;Daisuke Kawasaki
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.228-228
    • /
    • 2004
  • Nuclear Environment Technology Institute (KHNP-NETEC) developed the conceptual design of the low and intermediate-level radioactive waste (LILW) repository. Among many engineering challenges, it is of particular importance to find out an optimum arrangement of near-surface disposal vaults in the repository area to minimize the radionuclide flux and concentration at the interface between the geo-sphere and bio-sphere. (omitted)

  • PDF

Glass Formulations for Vitrification of Low- and Intermediate-level Waste

  • Kim, Cheon-Woo;Park, Jong-Kil;Ha, Jong-Hyun;Song, Myung-Jae;Lee, Nel-Son;Kong, Peter-C.;Anderson, Gary-L.
    • 한국세라믹학회지
    • /
    • 제40권10호
    • /
    • pp.936-942
    • /
    • 2003
  • In order to develop glass formulations for vitrifying Low-and Intermediate-Level radioactive Wastes (LILW) from nuclear power plants of Korea Hydro & Nuclear Power (KHNP) Co., Ltd., promising glass formulations were selected based on glass property model predictions for viscosity, electrical conductivity and leach resistance. Laboratory measurements were conducted to verify the model predictions. Based on the results, the models for electrical conductivity, US DOE 7-day Product Consistency Test (PCT) elemental release, and pH of PCT leachate are accurate for the LILW glass formulations. However, the model for viscosity was able to provide only qualitative results. A leachate conductivity test was conducted on several samples to estimate glass leach resistance. Test results from the leachate conductivity test were useful for comparison before PCT elemental release results were available. A glass formulation K11A meets all the KHNP glass property constraints, and use of this glass formulation on the pilot scale is recommended. Glass formulations K12A, K12B, and K12E meet nearly all of the processing constraints and may be suitable for additional testing. Based on the comparison between the measured and predicted glass properties, existing glass property models may be used to assist with the LILW glass formulation development.

Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository

  • Jo, Yongheum;Han, Sol-Chan;Ok, Soon-Il;Choi, Seonggyu;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1324-1329
    • /
    • 2018
  • This study presents a practical application of complementary safety indicators, which can be applied in a safety assessment of a radioactive waste repository by excluding a biosphere simulation and comparing the artificial radiation originating from the repository with the background natural radiation. Complementary safety indicators (radiotoxicity flux from geosphere and radiotoxicity concentration in seawater) were applied in the safety assessment of a rock-cavern type low and intermediate level radioactive waste (LILW) repository in the Republic of Korea. The natural radionuclide ($^{40}K$, $^{226,228}Ra$, $^{232}Th$, and $^{234,235,238}U$) concentrations in the groundwater and seawater at the Gyeongju LILW repository site were measured. Based on the analyzed concentrations of natural radionuclides, the levels of natural radiation were determined to be $8.6{\times}10^{-5}$ - $8.0{\times}10^{-4}Sv/m^2/yr$ and $6.95{\times}10^{-5}Sv/m^3$ for radiotoxicity flux from the geosphere and radiotoxicity concentration in seawater, respectively. From simulation results obtained using a Goldsim-based safety assessment model, it was determined that the radiotoxicity of radionuclides released from the repository is lower than that of the natural radionuclides inherently present in the natural waters. The applicability of the complementary safety indicators to the safety case was discussed with regard to reduction of the uncertainty associated with biosphere simulations, and communication with the public.

플라즈마 및 전기유도가열을 이용한 중.저준위 방사물 처리기술 개발 (A Development of Technology for Low- and Intermediate-Level Radioactive Waste Treatment utilizing Induction heater and Plasma torch)

  • 문영표;조천형;송명재;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.357-360
    • /
    • 1997
  • Currently, there is a need for the development of an advanced new technology for Low-and Intermediate-Level Radioactive Waste (LILW) treatment from nuclear power plants. The vitrification and melting technology by the use of the electrical equipments such as induction heater and plasma torch based furnace, along with off-gas treatment are considered as the most promising one of the LILW treatment technology since they can produce a very stable waste forms as well as considerably large volume reduction, which is a world-wide trend to apply for radioactive waste treatment. Korea Electric Power Research Institute(KEPRI) has already completed a feasibility study on LILW treatment and conceptual system design of a demonstration plant to be constructed. For this research, KEPRI selected a cold crucible melter(CCM) for the vitrification of combustible waste, and plasma torch based furnace(PT) for the melting of noncombustible waste, along with off-gas treatment for the volatile radioisotopes such as cesium.

  • PDF

Korean Status and Prospects for Radioactive Waste Management

  • Song, M.J.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2013
  • The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Since the initial introduction of nuclear power to Korea in 1978, rapid growth in nuclear power has been achieved. This large nuclear power generation program has produced a significant amount of radioactive waste, both low- and intermediate-level waste (LILW) and spent nuclear fuel (SNF); and the amount of waste is steadily growing. For the management of LILW, the Wolsong LILW Disposal Center, which has a final waste disposal capacity of 800,000 drums, is under construction, and is expected to be completed by June 2014. Korean policy about how to manage the SNF has not yet been decided. In 2004, the Atomic Energy Commission decided that a national policy for SNF management should be established considering both technological development and public consensus. Currently, SNF is being stored at reactor sites under the responsibility of plant operator. The at-reactor SNF storage capacity will run out starting in 2024. In this paper, the fundamental principles and steps for implementation of a Korean policy for national radioactive waste management are introduced. Korean practices and prospects regarding radioactive waste management are also summarized, with a focus on strategy for policy-making on SNF management.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.