• Title/Summary/Keyword: LIGA-reflow process

Search Result 15, Processing Time 0.024 seconds

Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process (LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작)

  • Hwang C.J.;Kim J.D.;Chung J.W.;Ha S.Y.;Lee K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

Back Light Unit using a Micro-lens Fabricated by the Modified LIGA Process (LIGA 방식을 적용시킨 Microlens 적용 Back Light Unit 개발)

  • Park, Jung-Ho;Sung, Ki-Sung;Yun, Suk-Joo;Ha, Soo-Yong;Lee, Kyu-Hyun;Hwang, Chul-Jin;Jeon, Suk-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.07a
    • /
    • pp.70-71
    • /
    • 2004
  • Back light unit(BLU) using a microlens fabricated by the modified LIGA process for the liquid crystal display(LCD) is proposed, and some experimental results are presented. To realize the back light unit using microlens pattern, LIGA and reflow process are used.

  • PDF

LIGA-reflow Micro-lens Pattern 적용 도광판의 미세사출성형

  • 황철진;허영무;하수용;이규현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.134-134
    • /
    • 2004
  • LCD-BLU의 고효율 광특성을 유도하기 위한 도광판의 초미세패턴 형상가공기술, 미세사출성형기술과 미세형상패턴 광학해석기술 및 전광특성 측정 및 보완기술이 요구된다. 이러한 기술들을 바탕으로 LCD-BLU의 고단가의 주요요인인 기능성 광학 sheet(prism sheet 등)를 연차적으로 제거 및 도광판에 기능을 결합하는 기술개발이 본 연구의 목적이다.(중략)

  • PDF

A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold ($50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구)

  • Hwang C. J.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

Surface characteristics on the optical pattern die of light guiding plate by machining types (가공방법에 따른 소형 도광판용 광학패턴 금형의 표면특성연구)

  • Do, Young-Soo;Kim, Jong-Sun;Go, Young-Bae;Kim, Jong Duck;Yoon, Kyung-Hwan;Hwang, Chul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.1-4
    • /
    • 2008
  • Micro pattern is applied to the light guiding plate(LGP) to enhance the uniformity of the brightness of the LCD. The micro cones are molded in intaglio on the surface of the LGP. The surface roughness of each cone was 40nm and 38nm in negative and positive die for laser ablation. In chemical etching, the surface roughness was 25nm, 24nm in negative and positive. And the surface roughness of negative and positive dies were 4nm and 5nm for LIGA-reflow process.

  • PDF

Microlens Fabrication Method by the Modified LICA Process (변형된 LIGA 공정을 이용한 마이크로렌즈 제작방법)

  • Lee, Sung-Keun;Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2450-2456
    • /
    • 2002
  • Microlenses and microlens arrays are fabricated using a novel fabrication technology based on the exposure of a resist (usually PMMA) to deep X-rays and subsequent thermal treatment. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness (less than 1 nm). The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses is produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. The geometry of the microlens is determined by parameters such as the X-ray dose applied to the PMMA, the diameter of the microlens, along with the heating temperature, heating time, and cooling rate in the thermal treatment. Microlenses are produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The modified LIGA process is used not only to construct hemispherical microlenses but also structures that are rectangular-shaped, star-shaped, etc.

Microlens Micro V-groove Fabrication by the Modified LIGA Process (변형 DEEP X-ray를 이용한 마이크로 렌즈 및 V-groove 제작)

  • 이정아;이승섭;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • Mircolens and microlens V-groove are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment and inclined deep X-ray lithography, respectively. The fabrication technology is very simple and produces microlenses and microlens V-groove with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension, and reflow during thermal treatment of irradiated PMMA. Microlenses were produced with diameters ranging from 30 to $1500\mu\textrm{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area. The size of the micro V-groove is fabricated in the range of 12~$60\mu\textrm{m}$.

Microlens and Arrays Fabrication by the Modified LIGA and Hot Embossing Process (변형 DEEP X-ray 공정과 Hot Embossing 공정을 이용한 마이크로 렌즈 및 어레이의 제작)

  • 이정아;이현섭;이성근;이승섭;권태헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.228-232
    • /
    • 2003
  • Mircolens and microlens arrays are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment. Hot embossing process is also studied for mass production. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension. and reflow during thermal treatment of irradiated PMMA. A hot embossing machine is designed and manufactured with a servo motor transfer system. The hot embossing process follows the steps of heating mold to the desired temperature, embossing a mold insert on substrate. cooling mold to the de-embossing temperature. and de-embossing. Microlenses were produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.