• 제목/요약/키워드: LIGA mold

검색결과 46건 처리시간 0.025초

PZT Sheet를 이용한 초음파 Transducer Array 제작 (Fabrication of Ultrasonic Transducer Array Using PZT Sheet)

  • 홍성제;조진우;박준식;정석원;박순섭;신상모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1157-1159
    • /
    • 1999
  • A new method was developed to fabricate 1-3 piezo composite, a part of ultrasonic transducer. PZT rod arrays were made by pressing PZT green sheet with LIGA mold, and were sintered. Its dielectric constant and electro-mechanical coupling coefficient showed 4000 and 55% at 1kHz, respectively. So, PZT rod arrays made by means of this process can be applied to ultrasonic transducer.

  • PDF

Fabrication and Modeling of Microlens Array by a Modified LIGA Process

  • Kim Dong Sung;Lee Hyun Sup;Yang Sang Sik;Lee Bong-Kee;Lee Sung-Keun;Kwon Tai Hun;Lee Seung S.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.7-13
    • /
    • 2003
  • Microlens arrays were fabricated using a novel fabrication technology based on the exposure of a PMMA (Polymethylmethacrylate) sheet to deep X-rays and subsequent thermal treatment. X-ray irradiation causes the decrease of molecular weight of PMMA, which in turn decreases the glass transition temperature and consequently causes a net volume increase during the thermal cycle resulting in a swollen microlens. A new physical modeling and analyses for micro lens formation were presented according to experimental procedure. A simple analysis based on the new model is found to be capable of predicting the shapes of micro lens which depend on the thermal treatment. For the replication of micro lens arrays having various diameters with different foci on the same surface, the hot embossing and the microinjection molding processes has been successfully utilized with a mold insert that is fabricated by Ni-electroplating based on a PMMA microstructure of micro lenses. Fabricated microlenses showed good surface roughness with the order of 1nm.

  • PDF

Display 특성 향상을 위한 MLA 광소자 개발 연구

  • 정한욱;김광열;이공수;신성욱;박홍진;최병덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.199-199
    • /
    • 2009
  • Recently, polymeric microlens arrays have become important elements in many applications. Microlens arrays have been used to enhance luminance efficiency and luminance power efficiency of light-emitting diodes (LEDs) and organic LEDs. Many processes for fabrication of microlens array are studied. Though the MLA has been fabricated by electroformed mold, LIGA process and reflow method, these methods were required masks, multiple process steps and post processing. In this paper, we proposed rapid and direct UV laser direct fabrication process using colorless liquid photopolymer, NOA60 for polarization activated microlens. The microlens arrays are formed on the NOA60 on glass, after the focused laser energy was irradiated to the material. The diameter of MLA was varied from 42 to 88 ${\mu}m$, and the height from 0.9 to 1.6 ${\mu}m$. The MLA fabricated using NOA60 shows more then 85% transmittance as well as good hardness for optical module.

  • PDF

표면 장력 효과를 고려한 마이크로 채널 충전과정 연구 (Study of Micro-channel Filling Flow Including Surface Tension Effects)

  • 김동성;이광철;권태헌;이승섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.47-52
    • /
    • 2001
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in. micro-system industries, in particular the bioapplication industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, both experimental and numerical studies have been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness were fabricated and a flow visualization system was also developed to observe the filling flow into the micro-channels. Experimental flow observations were extensively made to find the effects of channel width and thickness, and effects of surface tension and volume flow rate and so on. And a numerical analysis system has been developed to simulate the filling flow into micro-channels with the surface tension effect taken into account. Discussed are the flow visualization experimental observations along with the predictability of the numerical analysis system.

  • PDF

마이크로 채널 충전 과정의 유동 현상(I) - 유동 가시화 실험 - (Flow Phenomena in Micro-Channel Filling Process (I) - Flow Visualization Experiment -)

  • 김동성;이광철;권태헌;이승섭
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1982-1988
    • /
    • 2002
  • Micro-injection molding and microfluidic devices with the help of MEMS technologies including the LIGA process are expected to play important roles in micro-system industries, in particular the bio-application industry, in the near future. Understanding fluid flows in micro-channels is important since micro-channels are typical geometry in various microfluidic devices and mold inserts for micro-injection molding. In the present study, Part 1, an experimental investigation has been carried out to understand the detailed flow phenomena in micro-channel filling process. Three sets of micro-channels of different thickness (40um,30um and 2011m) were fabricated using SU-8 on silicon wafer substrate. And a flow visualization system was developed to observe the filling flow into the micro-channels. Experimental flow observations are extensively made to find the effects of pressure, inertia force, viscous force and surface tension. A dimensional analysis for experimental results was carried out and several relationships A dimensionless parameters are obtained.

모듈화된 초소형 몰드 시스템(MSMS)을 이용한 다단 마이크로 구조물의 초소형 사출성형 공정 (Replication of Multi-level Microstructures by Microinjection Molding Using Modularized and Sectioned Micromold System)

  • 이봉기;권태헌
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.859-866
    • /
    • 2010
  • 본 연구에서는 다단 마이크로 구조물의 대량성형을 위하여, 모듈화된 초소형몰드 시스템(MSMS)을 이용한 초소형 사출성형 공정을 수행하였다. 본 연구에서 적용된 초소형몰드 시스템은 여러 모듈들로 구성되어 있으며, 각 모듈들은 다양한 단면 마이크로 구조물을 가지고 있다. 초소형몰드 시스템의 모듈들은 X-선 리소그래피 공정 및 니켈 전주도금 공정으로 제작되었으며, 다양한 모듈들을 조합 및 결합함으로써 복잡한 형상을 가지는 초소형몰드 시스템을 효과적으로 구현할 수 있다. 이와 같은 초소형몰드 시스템을 적용함으로써, 본 연구에서는 다단 구조물의 표면에 마이크로 삼각 프리즘이 주기적으로 배열되어 있는 다단 마이크로 구조물의 초소형 사출성형 공정을 성공적으로 수행하였다.