• Title/Summary/Keyword: LIDAR intensity

Search Result 32, Processing Time 0.035 seconds

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

GENERATION OF AIRBORNE LIDAR INTENSITY IMAGE BY NORMALIZAING RANGE DIFFERENCES

  • Shin, Jung-Il;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.504-507
    • /
    • 2006
  • Airborn Lidar technology has been applied to diverse applications with the advantages of accurate 3D information. Further, Lidar intensity, backscattered signal power, can provid us additional information regarding target's characteristics. Lidar intensity varies by the target reflectance, moisture condition, range, and viewing geometry. This study purposes to generate normalized airborne LiDAR intensity image considering those influential factors such as reflectance, range and geometric/topographic factors (scan angle, ground height, aspect, slope, local incidence angle: LIA). Laser points from one flight line were extracted to simplify the geometric conditions. Laser intensities of sample plots, selected by using a set of reference data and ground survey, werethen statistically analyzed with independent variables. Target reflectance, range between sensor and target, and surface slope were main factors to influence the laser intensity. Intensity of laser points was initially normalized by removing range effect only. However, microsite topographic factor, such as slope angle, was not normalized due to difficulty of automatic calculation.

  • PDF

Obstacle Classification Method Based on Single 2D LIDAR Database (2D 라이다 데이터베이스 기반 장애물 분류 기법)

  • Lee, Moohyun;Hur, Soojung;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.3
    • /
    • pp.179-188
    • /
    • 2015
  • We propose obstacle classification method based on 2D LIDAR(Light Detecting and Ranging) database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width, intensity, variance of range, variance of intensity data. The first classification was processed by the width data, and the second classification was processed by the intensity data, and the third classification was processed by the variance of range, intensity data. The classification was processed by comparing to database, and the result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.

Land Cover Classification Using Lidar and Optical Image (라이다와 광학영상을 이용한 토지피복분류)

  • Cho Woo-Sug;Chang Hwi-Jung;Kim Yu-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.139-145
    • /
    • 2006
  • The advantage of the lidar data is in fast acquisition and process time as well as in high accuracy and high point density. However lidar data itself is difficult to classify the earth surface because lidar data is in the form of irregularly distributed point clouds. In this study, we investigated land cover classification using both lidar data and optical image through a supervised classification method. Firstly, we generated 1m grid DSM and DEM image and then nDSM was produced by using DSM and DEM. In addition, we had made intensity image using the intensity value of lidar data. As for optical images, the red, blue, green band of CCD image are used. Moreover, a NDVI image using a red band of the CCD image and infrared band of IKONOS image is generated. The experimental results showed that land cover classification with lidar data and optical image together could reach to the accuracy of 74.0%. To improve classification accuracy, we further performed re-classification of shadow area and water body as well as forest and building area. The final classification accuracy was 81.8%.

Map Error Measuring Mechanism Design and Algorithm Robust to Lidar Sparsity (라이다 점군 밀도에 강인한 맵 오차 측정 기구 설계 및 알고리즘)

  • Jung, Sangwoo;Jung, Minwoo;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.

Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment (비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램)

  • Jung, Minwoo;Jung, Sangwoo;Jang, Hyesu;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

Intensity Local Map Generation Using Data Accumulation and Precise Vehicle Localization Based on Intensity Map (데이터 누적을 이용한 반사도 지역 지도 생성과 반사도 지도 기반 정밀 차량 위치 추정)

  • Kim, Kyu-Won;Lee, Byung-Hyun;Im, Jun-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1046-1052
    • /
    • 2016
  • For the safe driving of autonomous vehicles, accurate position estimation is required. Generally, position error must be less than 1m because of lane keeping. However, GPS positioning error is more than 1m. Therefore, we must correct this error and a map matching algorithm is generally used. Especially, road marking intensity map have been used in many studies. In previous work, 3D LIDAR with many vertical layers was used to generate a local intensity map. Because it can be obtained sufficient longitudinal information for map matching. However, it is expensive and sufficient road marking information cannot be obtained in rush hour situations. In this paper, we propose a localization algorithm using an accumulated intensity local map. An accumulated intensity local map can be generated with sufficient longitudinal information using 3D LIDAR with a few vertical layers. Using this algorithm, we can also obtain sufficient intensity information in rush hour situations. Thus, it is possible to increase the reliability of the map matching and get accurate position estimation result. In the experimental result, the lateral RMS position error is about 0.12m and the longitudinal RMS error is about 0.19m.

Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data (GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발)

  • Jang Jae-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.693-699
    • /
    • 2006
  • Digital airborne image must be precisely orthorectified to become geographical information. For orthorectification of airborne images, GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) elevation data were employed. In this study, 635 frame airborne images were produced and LIDAR data were converted to raster image for applying to image orthorectification. To derive images with constant brightness, flat field correction was applied to images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated by collecting 50 ground control points from arbitrary five images and LIDAR intensity image. As validation result, RMSE (Root Mean Square Error) was 0.387 as almost same as only two times of pixel spatial resolution. It is possible that this automatic orthorectification method of airborne image with higher precision is applied to airborne image industry.

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF