• Title/Summary/Keyword: LIDAR Data

Search Result 340, Processing Time 0.021 seconds

A Study on a Lossless Compression Scheme for Cloud Point Data of the Target Construction (목표 구조물에 대한 점군데이터의 무손실 압축 기법에 관한 연구)

  • Bang, Min-Suk;Yun, Kee-Bang;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.33-41
    • /
    • 2011
  • In this paper, we propose a lossless compression scheme for cloud point data of the target construction by using doubleness and decreasing useless information of cloud point data. We use Hough transform to find the horizontal angle between construction and terrestrial LIDAR. This angle is used for the rotation of the cloud point data. The cloud point data can be parallel to x-axis, then y-axis doubleness is increased. Therefore, the cloud point data can be more compressed. In addition, we apply two methods to decrease the number of cloud point data for useless information of them. One is decimation of the cloud point data, the other is to extract the range of y-coordinates of target construction, and then extract the cloud point data existing in the range only. The experimental result shows the performance of proposed scheme. To compress the data, we use only the position information without additional information. Therefore, this scheme can increase processing speed of the compression algorithm.

Visibility Estimated from the Multi-wavelength Sunphotometer during the Winter 2011 Intensive Observation Period at Seoul, Korea (2011년 겨울철 서울시 대기 집중 관측 기간 동안 다파장 복사계로 분석된 에어러솔 연직분포와 시정 거리)

  • Lee, Kwon-Ho;Kim, Kyung-Won;Kim, Gwanchul;Jung, Kweon;Lee, Soon-Hee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.682-691
    • /
    • 2013
  • The aerosol extinction vertical profile and surface visibility have been derived from the Microtops-II sunphotometer observation during the winter 2011 intensive observation period (IOP) at Seoul, Korea. Using models of degradation of aerosol optical thickness (AOT) and aerosol scale height, we have performed extinction-visibility modulation to determine the height dependent aerosol extinction and visibility. It is shown that the aerosol loading is relatively low during IOP (mean $AOT_{550}=0.22{\pm}0.08$, ${\AA}$ngstr$\ddot{o}$m exponent=$1.14{\pm}0.26$). Modeled extinction by use of Microtops II sunphotometer data shows good agreement with measurements by the Multi-wavelenth Polarization Lidar (MPoLAR), and the derived surface visibility are consistent with data from the transmissometer. These results emphasize the use of a vertically resolved extinction from AOT to predict visibility conditions at ground level.

Generation of 3D Campus Models using Multi-Sensor Data (다중센서데이터를 이용한 캠퍼스 3차원 모델의 구축)

  • Choi Kyoung-Ah;Kang Moon-Kwon;Shin Hyo-Sung;Lee Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.205-210
    • /
    • 2006
  • With the development of recent technology such as telematics, LBS, and ubiquitous, the applications of 3D GIS are rapidly increased. As 3D GIS is mainly based on urban models consisting of the realistic digital models of the objects existing in an urban area, demands for urban models and its continuous update is expected to be drastically increased. The purpose of this study is thus to propose more efficient and precise methods to construct urban models with its experimental verification. Applying the proposed methods, the terrain and sophisticated building models are constructed for the area of $270,600m^2$ with 23 buildings in the University of Seoul. For the terrain models, airborne imagery and LIDAR data is used, while the ground imagery is mainly used for the building models. It is found that the generated models reflect the correct geometry of the buildings and terrain surface. The textures of building surfaces, generated automatically using the projective transformation however, are not well-constructed because of being blotted out and shaded by objects such as trees, near buildings, and other obstacles. Consequently, the algorithms on the texture extraction should be improved to construct more realistic 3D models. Furthermore, the inside of buildings should be modeled for various potential applications in the future.

  • PDF

Accuracy-based Evaluation of the Utilization of Spatial Information for BIM Application (BIM 적용을 위한 공간정보의 정확도 기반 활용성 평가)

  • Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.669-678
    • /
    • 2023
  • Recently, spatial information has been applied to various fields and its usability is increasing day by day. In particular, in the field of civil engineering and construction, BIM based on spatial information is being applied to all construction industries and related research has been conducted. BIM is a technology that utilizes spatial information from the design phase and aids in the construction and maintenance of buildings, including the management of their attributes. However, to apply BIM technology to existing buildings, it takes a lot of time and money to produce models based on design drawings along with current surveying. In this study, quantitative and qualitative analysis was conducted to determine the applicability of the acquired data and the applicability of BIM by generating data and analyzing the accuracy using UAV images and ground lidar, which are representative spatial information acquisition methods. Quantitative analysis revealed that TLS (Terrestrial Laser Scanner) showed reliable accuracy in both planar and elevation measurements, whereas unmanned aerial images exhibited lower accuracy in elevation measurements, resulting in reduced reliability. Qualitative analysis indicated that neither TLS nor unmanned aerial images alone provided perfect completeness. However, the combination of both spatial information sources, tailored to specific needs, resulted in the most comprehensive completeness. Therefore, it is concluded that the appropriate utilization of spatial information acquired through unmanned aerial images and TLS holds the potential for application in the fields of BIM and reverse engineering.

Development of Autonomous Navigation System Using Simulation Based on Unity-ROS (Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증)

  • Kiwon Kim;Hyuntae Bang;Jeonghwa Seo;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation (Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선)

  • Chiyun Noh;Sangwoo Jung;Yujin Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets (재해석자료를 이용한 한반도 해상의 기준풍속 추정)

  • Kim, Hyun-Goo;Kim, Boyoung;Kang, Yong-Heack;Ha, Young-Cheol
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

Comparison of Lidar data and NGIS digital topographic map data for an efficient flood configuration (효율적인 홍수범람모의용 지형자료구축을 위한 Lidar자료와 NGIS 수치지형도 자료의 비교)

  • Kwon, Oh-Jun;Kim, Kye-Hyun;Song, Yong-Cheol;Min, Sook-Joo;Kim, Kyung-Soon
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.141-146
    • /
    • 2004
  • 최근 들어 국내에서도 홍수에 의한 재산과 인명피해를 최소화하기 위해 지역특성에 알맞은 홍수지도를 제작 중에 있으며, 주로 LiDAR를 이용하여 홍수지도 지형자료를 구축하고 있다. 그러나 이에 많은 시간과 비용이 소요되기 때문에 이미 전국적으로 구축된 수치지형도를 이용한 홍수지도 지형자료 구축의 가능성과 타당성을 검증의 필요성이 제기되고 있다. 이에 따라 본 연구에서는 수치지형도를 이용한 홍수지도제작시 가장 핵심이 되는 정확한 지형자료구축을 위해서 Breakline처리기법과 하천종횡단자료 연계방안을 중심으로 구리시 일부지역을 대상으로 DEM을 시범제작 하였다. 수치지형도와 LiDAR를 이용하여 구축한 DEM을 검수점을 통한 RMSE오차를 이용하여 수직위치정확도를 비교분석하였다. 분석을 위하여 선행연구(홍수지도제작, 2002)에서 검수점으로 사용한 9점과 제방부분의 실측한 9점을 본 연구의 검수점으로 사용하였다. 비교 결과 RMSE가 수치지형도 DEM의 경우 ${\pm}2.658m$이고, LiDAR DEM의 경우 ${\pm}3.430m$로 나타났다. 두 자료 모두 알려진 오차범위보다 훨씬 높은 오차가 발생함을 알 수 있었다. 향후 수치지형도를 이용한 효율적인 홍수지도 지형자료 구축을 위해서는 수치지형도의 신속하고 지속적인 갱신이 필요할 것이며, 현재 도시지역에만 구축되어 있는 1:1,000 수치지형도를 주변 하천지역까지 확대해서 구축해야 할 필요성이 있을 것으로 사료된다. 아울러 도입초기단계의 LiDAR 측량기술의 보급과 관련모델의 기술의 발달로 인하여 정확도 높은 DEM이 요구된다면 고밀도의 방대한 양의 LiDAR 자료로 DEM을 구축하는 것이 바람직하다고 사료된다.및 이용대책을 수립하는 데 활용될 수 있다., $1,000-2,000{\mu}g\;g^{-1}$), 나머지 177종 식물은 살초활성을 나타내지 않았다. 높은 살초활성을 나타낸 식물로부터 분리되는 천연활성물질들은 향후 새로운 제초제 개발을 위한 모화합물 제공, 상호대립억제 작용성을 갖는 작물 품종 개발 혹은 개량에의 활용, 그리고 친환경 유기농업용 잡초방제에의 활용이 기대된다.내(皮膚上皮組織內)의 Langerhans cell내(內)의 Birbeck granule에 비(比)해 수적(數的)으로 현저히 감소(減少)되어 있었다. 그러나 Thy-1 양성(陽性) dendritic cell에서 볼 수 있는 dense-core 과립(顆粒)은 별변화(別變化)없이 쉽게 관찰(觀察)될 수 있었다. 조직배양(組織培養)을 한 견(犬)의 keratinocyte에 대(對)해 사람 pemphigus vulgaris의 항체(抗體)로 반응(反應)시킨 후 protein-A gold(15 nm)로 표식(標識)시킨 바 제일 바깥 상층(上層)의 keratinocyte에 있어서 세포막표면(細胞膜表面)을 따라 표식(標識)되어 세포막항원(細胞膜抗元)을 나타내었으며, 이와 같은 소견(所見)으로 미루어 정상피부(正常皮膚) 중층편평상피세포(重層扁平上皮細胞)에서도 동일(同一)한 소견(所見)을 관찰(觀察)할 수 있다고 본다.al remnants, Resorption of fetus로 관찰된 것이다. Fetal death는 수정후 $14{\sim}18$일까지의 사망으로써 Maceration of fetus로 관찰되는 것이다. 통계학적 분석은 각 Group의 착상 을과 자궁 내 사망 율을 산출할 때에는 각 임신마우스에 따라 발생빈도가 크

  • PDF

3D Wetlands Classification Mapping of Eulsukdo Area Using LiDAR Data (LiDAR 자료를 이용한 을숙도 지역 3차원 습지 구분도 제작)

  • Lee, Jae-One;Yi, Gi-Chul;Kim, Yong-Suk;We, Kwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.639-647
    • /
    • 2009
  • In line with the rapid settlement of information society, the demand for geospatial information and its applications are dramatically increasing. The Project of National Geographic Information System(NGIS) is actively on going to meet up-to-dateness and accuracy of geospatial data. It is fact that the public interest in environmental issues is increasing than ever in accordance with the restoration of the four major rivers, core project of Green New Deal Policy, and the event of the Ramsar General Meeting. Because the Nakdong River Estuary is a place of great importance in both aspects of wetland and environment conservation, a variety of researches related to this area are progressing. Although artificial developments and natural phenomena are rapidly changing the topography and ecosystem of this area, the effort to build topographic DB for change monitoring is very slow. This study describes a Lidar surveying project over the restored wetland Eulsukdo, the southermost part of the Nakdong River, to establish precise topographic DB throughout producing 3D topographical maps and wetland classification maps. The results of this study will make a large contribution to the systematic maintenance and management for the restored Eulsukdo wetland.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.