• Title/Summary/Keyword: LGP(Light guiding plate)

Search Result 20, Processing Time 0.035 seconds

Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process (LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작)

  • Hwang C.J.;Kim J.D.;Chung J.W.;Ha S.Y.;Lee K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold ($50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구)

  • Hwang C. J.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

Design and Fabrication of Light Guiding Plate for Photobioreactor (광생물 반응기를 위한 도광판 설계 및 제작)

  • Park, Gi Chan;Kim, Hun;Shin, Seong Seon;Shin, Hyun Keel;Kim, Jongtye;Jeong, Sanghwa;Park, Jong Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • We present results of optical design and fabrication of a light guiding plate (LGP) to be used as an illumination system for photobioreactors. Modeling of a light-emitting diode (LED) light source, a reflection film, and LGP patterns was performed. Especially, the LGP patterns were modeled as Lambertian scatterers. The modeling parameters (reflectance, scatterer width) were determined through matching simulations with the experimentally measured illuminance distribution for a test LGP. An LGP for an LED light source was designed with the extracted model parameters, and fabricated using a computerized numerical control machine. Optical characteristics including average illuminance and uniformity of illuminance distribution were measured for the fabricated LGP.

A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern : II. Mold and Light Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학 패턴의 영향 연구 : II. 금형 및 광특성)

  • Hwang C.J.;Ko Y.B.;Kim J.S.;Min I.K.;Yu J.W.;Yoon K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.339-340
    • /
    • 2006
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

Fabrication of Light Guiding Plate with Nanometer-Sized Patterns Using an Injection Molding Technology of Electrically Heated Mold Method (전열가열금형 방식의 사출성헝 기술을 이용한 나노 패턴 도광판의 제작)

  • Yun, Tae-Uk;Han, Ga-Ram;Kang, Min-Ki;Hong, Chin-Soo;Moon, Dae-Gyu;Kim, Chang-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04a
    • /
    • pp.55-56
    • /
    • 2009
  • A light guiding plate (LGP) with nanometer-sized patterns was fabricated by injection molding method which employed electrically healed mold and the transcription of injection-molded parts was investigated. A Ni stamper was fabricated using MEMS technology. The Ni stamper was then installed in a movable heated core which is a key part of the mold. Using this mold, injection-molded plastic LGP parts were manufactured at different mold temperatures and the effect of the temperature on the transcription of the parts was investigated.

  • PDF

Design and Fabrication of a Light-Guiding Plate for a Photobioreactor Utilizing a Hybrid LED Plus Sunlight Source (LED와 태양광 하이브리드 광원을 이용한 광생물 반응기용 도광판 설계 및 제작)

  • Lim, Hyon-Chol;Yang, Seung-Jin;Baek, Jun-Hyeok;Kim, Jae-Young;Jang, Kyungmin;Kim, Jongtye;Jeong, Sanghwa;Park, Jong-Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.73-80
    • /
    • 2016
  • In this paper, we report the results of a study on the design and fabrication of a light-guiding plate (LGP) using a hybrid light-emitting diode (LED) and sunlight source that can be applied to a photobioreactor. LGP patterns for the LED source were designed and engraved on an LGP, together with previously reported patterns for a sunlight source. A control system for the hybrid LGP was designed to maintain the output photon flux density (PFD) from the LGP at a constant value. When the target value of the output PFD was set to $70{\mu}E/(m^2{\cdot}s)$, the error range of the output PFD was found to be within ${\pm}2%$.

Effects on the process factors of blow molding affects to the PET bottle (사출성형 특성을 고려한 2인치 휴대폰용 도광판 금형제작에 관한 연구)

  • Hwang, Chul-Jin;Do, Young-Soo;Kim, Jong-Sun;Min, In-Gi;Kim, Jong-Dug;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF

A Study on the Surface Characteristics of Injection Mold and Injection Molded Part depending on LGP-Mold Fabrication Methods (도광판 금형의 제작 방법에 따른 사출금형 및 성형품의 표면특성에 관한 연구)

  • Do, Y.S.;Kim, J.S.;Ko, Y.B.;Kim, J.D.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.596-602
    • /
    • 2007
  • LGP (Light Guiding Plate) of LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of the major components that affect the product quality of LCD. The optical patterns of LGP(2.2") molds are fabricated by three different methods, namely, (1) laser ablation, (2) chemical etching and (3) LiGA-reflow, respectively. The characteristics of surface patterns and roughnesses of molds and injection molded parts were compared to evaluate the optical characteristics. The optical patterns of injection molded LGP with mold fabricated by LiGA - reflow method showed the best geometric structure. The surface roughness (Ra) of LGP#s with molds fabricated by (1) laser ablation: $Ra={\sim}31nm$, (2) chemical etching: $Ra={\sim}22nm$, and (3) LiGA-reflow: $Ra={\sim}4nm$.

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern : I. Optical Analysis and Design (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : I. 광학 해석 및 설계)

  • Hwang, C.J.;Ko, Y.B.;Kim, J.S.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.239-242
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LGP (Light Guiding Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200$ um in diameter on it by etching process. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern design with 50um micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different aspect ratio (i.e. $0.2{\sim}0.5$) of optical pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, high aspect ratio micro-lens patterned LGP showed superior results to the one made by low aspect ratio in average luminance.

  • PDF