• Title/Summary/Keyword: LES-WASS-3D

Search Result 32, Processing Time 0.017 seconds

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Wave Run-up Characteristics of Ocean Wave, Current, and Kelvin Wave Interaction in the Canal (운하에서 파랑·흐름·항주파의 상호작용에 의한 처오름 특성)

  • Hur, Dong-Soo;Lee, Woo-Dong;Jung, Kwang Hyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.55-61
    • /
    • 2013
  • The numerical simulation using LES-WASS-3D is developed to investigate the wave run-up on the revetment along the canal. Interaction of ocean wave, current, and Kelvin wave is investigated on 40 conditions varying the number of ship, cruising direction, and relative cruising location of ships, when a 650TEU container cruises in the canal. The mean wave run-up heights on the revetment are compared for every simulated conditions. The largest height of wave run-up is generated at the C-pair condition and the wave run-up generated at the canal entrance is larger than that at the inside canal. When Kelvin waves is interacted with the current, the mean wave run-up height is increased approximate 10% compared with no current condition.