• Title/Summary/Keyword: LES-WASS-3D

Search Result 32, Processing Time 0.027 seconds

A Numerical Study on Tsunami Run-up Heights on Impermeable/Permeable Slope (투과성 및 불투과성 경사면 상에서 지진해일의 처오름 높이에 관한 수치적 검토)

  • Lee, Woo-Dong;Hur, Dong-Soo;Goo, Nam-Heon
    • Journal of Coastal Disaster Prevention
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In order to examine the characteristics of tsunami run-up heights on impermeable/permeable slope, a numerical wave tank by upgrading LES-WASS-3D was used in this study. Then, the model were compared with existing hydraulic model test for its verification. The numerical results well reproduced experimental results of solitary wave deformation, propagation and run-up height under various conditions. Also, the numerical simulation with a slope boundary condition has been carried out to understand solitary wave run-up on impermeable/permeable slope. It is shown that the run-up heights on permeable slope is 52.64-63.2% smaller than those on the impermeable slope because of wave energy dissipation inside the porous media. In addition, it is revealed that the numerical results with slope boundary condition agreed well with experimental results in comparison with the results by using stair type boundary condition.

Characteristics of Run-up Height over Sandy Beach with Submerged Breakwaters ; PART II - Effect of Shape of Submerged Breakwaters (잠제 설치 연안의 처오름 높이 특성 ; PART II - 잠제의 제원에 의한 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.429-439
    • /
    • 2008
  • The purpose of this study is to examine the characteristics of run-up height over sandy beach due to the shape of submerged breakwater. For the discussion on it in detail, 3-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly interaction of Wave Structure Sandy beach (hereafter, LES-WASS-3D; Hur and Lee, 2007) has been used to simulate run-up height over sandy beach as well as wave field around submerged breakwaters. Using the results obtained from numerical simulation, the effects of the shape of submerged breakwaters (crown height, crown width, crown length and submerged breakwater's slope gradient) on run-up height over sandy beach have been discussed related to the wave height distribution and characteristics of up-layer flow around ones.

Effect of Beach Curvature on Wave Fields in Coastal Area with Submerged Breakwaters (잠제 설치 연안역의 파동장에 미치는 해안곡률의 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.463-472
    • /
    • 2009
  • The aim of this study is to examine the effect of beach curvature on wave fields in coastal area with Submerged Breakwaters using the 3D numerical model that is able to simulate directly interaction of WAve Structure Sandy beach (LES-WASS-3D). At first, the adopted model was validated through the comparison with an existing experimental data and showed fairly nice agreement. And then, the numerical simulations have been performed to investigate the effect of according to the variation of beach curvature. Based on the numerical results, the wave height, mean surface elevation, mean flow around submerged breakwaters and longshore distributions of run-up height have been discussed in relation to the variation of beach curvature.

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

Numerical Experiment of Wave Attenuation considering Behavior of Vegetation Zone (식생대의 거동을 고려한 파랑감쇠의 수치실험)

  • Jeong, Yeon Myeong;Hur, Dong Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.232-239
    • /
    • 2016
  • In this study, the two-way coupled analysis method of LES-WASS-2D and DEM has been newly developed to review numerically wave attenuation due to behavior of vegetation zone could not yet applied in numerical analysis. To verify the applicability, two-way coupled analysis method is analyzed comparing to the experimental result about characteristics of wave attenuation using vegetation. Numerically analyzed behavior and characteristics of wave attenuation according to height length, distribution length, spacing of vegetation zone and incident wave conditions. It was confirmed to be effective of 3~4% wave attenuation were increased height length and distribution length, narrowed spacing of vegetation. Finally, this study is applicable to behavior and wave attenuation prediction of vegetation zone.

Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters (다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

Application of 3-D Numerical Wave Tank for Dynamic Analysis of Nonlinear Interaction between Tsunami and Vegetation (쓰나미-식생 비선형 상호작용의 동적해석을 위한 3차원 수치파동수조의 적용)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.831-838
    • /
    • 2016
  • The disaster preventing system using vegetation has been growing in the field of coastal engineering in recent years. To analyze wave and flow fields under nonlinear interactions between tsunami and vegetation, the purpose of this study is to evaluate newly-developed 3-D numerical wave tank including energy dissipation by tsunami-vegetation interaction based on existing N-S solver with porous body model. Comparing numerical results using mean drag coefficient and dynamic drag coefficient due to Reynolds number to existing experimental results it is revealed that computed results considering the dynamic drag coefficient are in good agreement with the laboratory test results for time-domain waveform. In addition, the calculated transmission coefficients of solitary waves in various vegetation densities and incident wave heights are also in good agreement with the experimental values. This confirms the validity and effectiveness of the developed 3-D numerical wave tank with the fluid resistance by vegetation.

3D Characteristics of Dynamic Response of Seabed around Submerged Breakwater Due to Wave Loading (파랑하중에 의한 잠제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2014
  • We analyzed the 3-D characteristics of the dynamic response of seabed around a submerged breakwater due to wave loading using a 3-D numerical scheme (LES-WASS-3D). Using our model, which considers the wave-structure-sandy seabed interactions in a 3-D wave field, we were able to investigate the 3-D characteristics of the pore-water pressure in the seabed around the submerged breakwater under various incident wave conditions. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with the existing experimental results and found good agreement between them. The numerical analysis reveals that high pore-water pressure in the seabed is generated below a large wave height at the front slope of the submerged breakwater. It was also shown that the non-dimensional pore-water pressure in the seabed increases as the wave period increases because the wave energy dissipation decreases on the submerged breakwater and seabed as the wave period increases.

Numerical Analysis on Self-Burial Mechanism of Submarine Pipeline with Spoiler under Steady Flow (정상흐름 하에서 스포일러 부착형 해저파이프라인의 자가매설 기구에 관한 수치해석)

  • Lee, Woo Dong;Hur, Dong Soo;Kim, Han Sol;Jo, Hyo Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.3
    • /
    • pp.146-159
    • /
    • 2016
  • This study used Navier-Stokes Solver(LES-WASS-2D) for analyzing hydrodynamic characteristics with high order in order to analyze self-burial mechanism of pipeline with spoiler under steady flow. For the validity and effectiveness of numerical model used, it was compared and analyzed with the experiment to show flow characteristics around the pipeline with and without the spoiler. And the hydraulic(flow, vortex, and pressure) and force characteristics were numerically analyzed around the pipeline according to the incident velocity, and shape and arrangement of spoiler. Primarily, if the spoiler is attached to the pipeline, the projected area is increased resulting in higher flow velocity toward the back and strong vortex caused by wake stream in the back. Secondly, the spoiler causes vertically asymmetric flow and vorticity fields and thus asymmetric pressure field. It increases the asymmetry of force on the pipe and thus develops large downward fluid force. Both of them are the causes of selfburying of the pipeline with spoiler.

Reflection and Hydraulic Characteristics inside Two-Chamber Vertical Slit Caisson in 3-D Oblique Wave Field (3차원 경사입사파동장에서 이중유공슬릿케이슨 내부의 수리특성 및 반사특성)

  • Hur, Dong-Soo;Lee, Jun;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.227-235
    • /
    • 2014
  • Using a 3-D numerical scheme (LES-WASS-3D) that considered wave-structure-sandy seabed interactions in a 3-D wave field, we analyzed the wave reflection and hydraulic characteristics inside a slit caisson with two chambers in a 3-D oblique wave field. To verify the 3-D numerical analysis method suggested in this study, we compared the numerical results with existing experimental results and found good agreement. The numerical analysis revealed that a standing wave field is generated on the front side of the slit caisson due to the effect of wave reflection. For incident waves propagating perpendicular to the slit caisson, the nodes and anti-nodes of the standing wave are apparent and symmetrical. However, in an oblique wave field, as the incident wave angle decreases, the nodes and anti-nodes of the standing wave become ambiguous and unsymmetrical. It was also found that the wave reflection coefficient decreases as the incident wave angle decreases. It can be pointed out that as the incident wave angle decreases, the turbulent intensity in the chamber increases. Thereby, the increased wave energy dissipation by the increased turbulent intensity reduces the rate of wave reflection. In addition, a strong turbulent intensity generally occurs in the first chamber.