• Title/Summary/Keyword: LES data

Search Result 183, Processing Time 0.024 seconds

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

Construction of Virtual Images for a Benchmark Test of 3D-PTV Algorithms for Flows

  • Hwang, Tae-Gyu;Doh, Deog-Hee;Hong, Seong-Dae;Kenneth D. Kihm
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1185-1194
    • /
    • 2004
  • Virtual images for PIV are produced for the construction of a benchmark test tool of PTV systems, Camera parameters obtained by an actual experiment are used to construct the virtual images, LES(Large Eddy Simulation) data sets of a channel flow are used for generation of the virtual images, Using the virtual images and the camera's parameters. three-dimensional velocity vectors are obtained for a channel flow. The capabilities of a 3D-PTV algorithm are investigated by comparing the results obtained by the virtual images and those by an actual measurement for the channel flow.

Evaluation of turbulence models in rough-wall boundary layers for hydroelectric applications

  • Dutta, Rabijit;Nicolle, Jonathan;Giroux, Anne-Marie;Piomelli, Ugo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.227-239
    • /
    • 2017
  • The accuracy of turbulence models for the Reynolds-Averaged Navier-Stokes (RANS) equations in rough-wall flows is evaluated using data from large-eddy simulations (LES) of boundary layers with favourable and adverse pressure gradients. Some features of the flow (such as flow reversal in the roughness sublayer) cannot be captured accurately by any model, due to the fundamental model formulation. In mild pressure gradients most RANS models are sufficiently accurate for engineering applications, but if strong favourable or adverse pressure gradients are applied (especially those leading to separation) the model performance rapidly degrades.

A Numerical Algorithm for Fault Location Estimation Considering Long-Transmission Line (장거리 송전선로를 고려한 사고거리추정 수치해석 알고리즘)

  • Kim, Byeong-Man;Chae, Myeong-Suk;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2139-2146
    • /
    • 2008
  • This paper presents a numerical algorithm for fault location estimation which used to data from both end of the transmission line. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the PMUs(Phasor Measurement Units) in the time-domain. This paper has separated from two part of with/without shunt capacitance(short/long distance). Most fault was arc one-ground fault which is 75% over [1]. so most study focused with it. In this paper, the numerical algorithm has calculated to distance for ground fault and line-line fault. In this paper, the algorithm is given with/without shunt capacitance using II parameter line model, simple impedance model and estimated using DFT(Discrete Fourier Transform) and the LES(Least Error Squares Method). To verify the validity of the proposed algorithm, the EMTP(Electro- Magnetic Transient Program) and MATLAB did used.

Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks

  • Bruno, L.;Khris, S.;Marcillat, J.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.315-332
    • /
    • 2001
  • Presented herein is a numerical study for evaluating the aerodynamic behaviour of equipped bridge deck sections. In the first part, the method adopted is described, in particular concerning turbulence models, meshing requirements and numerical approach. The validation of the procedure represents the aim of the second part of the paper: the results of the numerical simulation in case of two-dimensional, steady, incompressible, turbulent flow around a realistic bridge deck are compared to the data collected from wind-tunnel tests. In order to demonstrate the influence of the section details and of the partial streamlining of the deck geometry on its aerodynamic behaviour, in the third part of the paper the effect of the fairings and of each item of equipment of the section (such as central barriers, side railings and sidewalks) is evaluated. The study has been applied to the deck section of the Normandy cable-stayed bridge.

Quantum Mechanical Analysis for the Numerical Calculation of Two-Diemensional Electron Gas(2DEG) in Single-Heterojunction Structures (단일 이종접합 구조에서의 2차원 전자개스(2DEG)의 수치적 연산을 위한 양자역학적 분석)

  • Hwang, Kwang-Chuel;Kim, Jin-Wook;Won, Chang-Sub;Ahn, Hyung-Keun;Han, Deuk-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.10
    • /
    • pp.564-569
    • /
    • 2000
  • This paper analyzed single AlGaAs/GaAa heterojunction energy band structures by solving Schr dinger's equation and Poisson's equation self-consistently. Four different concentrations, positively ionized donors, holes in the valence band, free electrons in the conduction band and 2DEG are taken into account for the whole system. 2DEG from both of the structures are obtained and compared with the date available in the literatures. Differential capacitances are also calculated from the concentration profiles obtained to prove the validity of the single AlGaAs/GaAs system. Finally, theoretical predictions for both of 2DEGs and the capacitances show good agreement with the experimental data referred in this study. It has only an error of les than 10 percent.

  • PDF

High-Definition Stereoscopic PTV (고해상 스테레오 PTV)

  • Doh Deog-Hee;Lee Won-Je;Cho Yong-Beom;Pyeon Yong-Beom
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.11-14
    • /
    • 2002
  • A new high-definition stereoscopic PTV was constructed using two CCD cameras, stereoscopic photogrammetry based on a 30-PTV principle. The arrangement of the two cameras was based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors were based on Genetic Algorithm based 30-PTV technique. The constructed Stereoscopic PTV technique was tested on the standard images of the Impinging jet proposed by VSJ. The results on the turbulent properties of the jet obtained by the constructed system showed a good agreement with the original LES data.

  • PDF

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Comparative study of flow over a circular disk using RANS turbulence models (원형 디스크 주위 유동에 대한 RANS 유동해석 비교 연구)

  • Ryu, Nam Kyu;Kim, Byoung Jae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.88-93
    • /
    • 2021
  • For a flow normal to a circular disk, the flow separation occurs from the edge of the disk and the flow recirculation zone exists behind the disk. Many existing studies conducted simulations of flow normal to a circular disk under low Reynolds numbers. Some studies performed LES or DES simulations under high Reynolds numbers. However, comparative study for different RANS models for high Reynolds numbers is very limited. This study presents numerical simulations of a flow normal to a circular disk using Realizable k-ε model and SST k-ω model. The recirculation bubble length and drag coefficient were compared with the experimental data. The SST k-ω model showed the excellent predictions for the recirculation bubble length and drag coefficient.

Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model (통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung;Kim, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.