Aerodynamic effects, such as drag force and flow-induced vibration (FIV), on civil engineering structures can be minimized by optimally modifying the structure shape. This work investigates the turbulent wake of a square prism with its faces modified into a sinusoidal wave along the spanwise direction using three-dimensional large eddy simulation (LES) and particle image velocimetry (PIV) techniques at Reynolds number $Re_{Dm}$ = 16,500-22,000, based on the nominal width ($D_m$) of the prism and free-stream velocity ($U_{\infty}$). Two arrangements are considered: (i) the top and bottom faces of the prism are shaped into the sinusoidal waves (termed as WSP-A), and (ii) the front and rear faces are modified into the sinusoidal waves (WSP-B). The sinusoidal waves have a wavelength of $6D_m$ and an amplitude of $0.15D_m$. It has been found that the wavy faces lead to more three-dimensional free shear layers in the near wake than the flat faces (smooth square prism). As a result, the roll-up of shear layers is postponed. Furthermore, the near-wake vortical structures exhibit dominant periodic variations along the spanwise direction; the minimum (i.e., saddle) and maximum (i.e., node) cross-sections of the modified prisms have narrow and wide wakes, respectively. The wake recirculation bubble of the modified prism is wider and longer, compared with its smooth counterpart, thus resulting in a significant drag reduction and fluctuating lift suppression (up to 8.7% and 78.2%, respectively, for the case of WSP-A). Multiple dominant frequencies of vortex shedding, which are distinct from that of the smooth prism, are detected in the near wake of the wavy prisms. The present study may shed light on the understanding of the underlying physical mechanisms of FIV control, in terms of passive modification of the bluff-body shape.
Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.
The broadband and discrete sources of sound in small cooling fans of propeller type and centrifugal type were investigated to understand the turbulent vortex structures from many bladed fans using ANSI test plenum for small air-moving devices (AMDs). The noise measurement method uses the plenum as a test apparatus to determine the acoustic source spectral density function at each operating conditions similar to real engineering applications based on acoustic similarity laws. The characteristics of fans including the head rise vs. volumetric flow rate performance were measured using a performance test facility. The sound power spectrum is decomposed into two non-dimensional functions: an acoustic source spectral distribution function F(St,.phi.) and an acoustic system response function G(He,.phi.) where St, He, and .phi. are the Strouhal number, the Helmholtz number, and the volumetric flow rate coefficient, respectively. The autospectra of radiated noise measurements for the fan operating at several volumetric flow rates,.phi., are analyzed using acoustical similarity. The rotating stall in the small propeller fan with a bell-mouth guided is mainly due to a leading edge separation. It creates a blockage in the passage and the reduction in the flow rate. The sound power levels with respect to the rotational speeds were measured to reveal the mechanisms of stall and/or surge for different loading conditions and geometries, for example, fans installed with a impinging plate. Lee and Meecham (1993) studied the effect of the large-scale motions like impinging normally on a flat plate using Large-Eddy Simulation(LES) and Lighthill's analogy.[ASME Winter Annual Meeting 1993, 93-WA/NCA-22]. The dipole and quadrupole sources in the fans tested are shown closely related to the vortex structures involved using cross-correlations of the hot-wire and microphone signals.
난류혼합층에서 속도비 변화에 따른 입자의 운동형태에 대하여 수치해석적 연구를 수행하였다. Turbulent closure를 목적으로 Subgrid모델을 바탕으로 한 LES를 적용하여고 입자 운동을 해석하기 위해 Lagrangian 방법을 적용하였다. 입자의 직경이 10, 50, 100, 150, 200${\mu}m$인 입자들이 분리판 끝단에서 정지한 상태로 혼합층에 유입이 되고, 큰-크기 와류구조에 영향을 받아 혼합층 내로 확산이 되어진다. 혼합층의 성장특성은 속도비 변화에 매루 민감하여, 입자의 확산은 혼합층의 속도비와 입자 직경의 변화에 따라 거동을 달리함을 알 수 있었다. 또한 Stokes 수와 입자확산의 관계를 나타내었다. 그 결과로 St~1인 경우 입자의 확산이 유동장의 확산보다 빠르게 일어나나, St<<1과 St>>1인 경우는 입자의 확산이 잘 일어나지 않음을 알 수 있다.
본 연구에서는 초음속 공동유동장에서 발생하는 압력변동을 저감하기 위한 피동제어방법의 유용성을 실험 및 수치해석적으로 조사하였다. 피동제어방법으로 사각 공동내 상류 벽면에 sub-cavity를 설치하였다. 공동내 하류벽면에 센서를 설치하여 압력변동 값을 실험적으로 측정하였으며, 측정된 압력변동값을 FFT변환하여 주파수 분석을 하였다. 수치계적으로는 공동내 압력변동 특성을 살펴보기 위해 3차원 비정상 Navier-Stokes 방정식에 유한체적법을 적용하여 유동장을 모사하였으며, 유동의 난류상태량들은 LES 방법을 사용하여 계산하였다. 본 연구에서 얻어진 결과는 다음과 같다. 공동유동에서 진동 특성은 공동 하류벽면에서 발생하는 압력진동에 의존한다. 특히 leading tip 두께와 sub-cavity 크기가 진동 저감효과에 주요 인자이다.
2006년에 고시가 된 "철도시설 안전세부기준"(건설교통부고시 제2006-395호)에 의하면 1km 이상의 철도터널을 건설할 경우 철도터널에 대한 화재 시뮬레이션을 수행하여 철도터널 내부의 화재에 대한 안전성 분석을 실시하도록 되어있다. 철도터널에서 화재에 대한 안전성 분석을 하기 위해서는 실험적 방법과 수치해석을 이용한 방법이 있는데, 본 연구에서는 수치해석적 방법을 이용하여 터널에서의 화재유동 및 온도장 분포를 해석하였으며, 실험 결과와 비교하여 수치해석의 신뢰성 정도를 분석하였다. Fletcher 등이 수행한 모형 터널 실험을 대상으로 수치해석을 수행하였다. 터널 모형은 길이 182m, 높이 2.4m, 폭 5.4m으로 이루어져 있으며, 수치해석에서도 실험과 동일한 상황을 가정하여 해석을 하였다. 화재가 발생한 부분은 터널의 입구로부터 112m 지점이며, pool fire를 사용하였다. 화재 강도는 약 2.76MW이며, 화원으로써는 Octane을 사용하였다. 수치해석을 위하여 LES 기법을 이용한 FDS (Fire Dynamics Simulator)를 사용하였으며, 본 연구에서는 계산 속도를 증속시키고, 단일 CPU에서는 처리가 곤란한 격자수를 처리하기 위하여 여러 개의 CPU를 사용하는 병렬 처리 기법을 활용하였다. 본 연구에서 사용된 총 격자의 개수는 2.4백만개 이며, 사용된 CPU수는 7개 이다. 수치해석 결과와 실험 결과를 비교 분석하여 수치해석의 신뢰성과 FDS의 철도터널 안전성 분석에의 활용 가능성에 대하여 논하였다.
If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.
This study aims at modeling boundary layers (BLs) encountered in sparse and built environments (i.e. open, suburban and urban) at the subsonic Wind Tunnel (WT) at Ryerson University (RU). This WT has an insignificant turbulence intensity and requires a flow-conditioning system consisting of turbulence generating elements (i.e., spires, roughness blocks, barriers) to achieve proper turbulent characteristics. This system was developed and validated in the current study in three phases. In phase I, several Computational Fluid Dynamic (CFD) simulations of the tunnel with generating elements were conducted to understand the effect of each element on the flow. This led to a preliminary design of the system, in which horizontal barriers (slats) are added to the spires to introduce turbulence at higher levels of the tunnel. This design was revisited in phase II, to specify slat dimensions leading to target BLs encountered by tall buildings. It was found that rougher BLs require deeper slats and, therefore, two-layer slats (one fixed and one movable) were implemented to provide the required range of slat depth to model most BLs. This system only involves slat movement to change the BL, which is very useful for automatic wind tunnel testing of tall buildings. The system was validated in phase III by conducting experimental wind tunnel testingof the system and comparing the resulting flow field with the target BL fields considering two length scales typically used for wind tunnel testing. A very good match was obtained for all wind field characteristics which confirms accuracy of the system.
역동적인 파랑에 노출되는 경우 다양한 failure mode를 쉽게 드러내는 Oil boom의 성능을 개선하기 위해 가장 정교한 파랑모형인 spatially filtered Navier-Stokes 식을 LES (Large Eddy Simulation), 잔차응력에 대한 LDS (Lagrangian Dynamic Smagorinsky 모형), SPH (Smoothed Particle Hydrodynamics) 기법을 활용하여 해석하는 새로운 수치모형이 제언되었다. 이어 부유식 Oil Boom의 누유특성을 규명하기 위해 oil spill, progressive wave, oil boom의 상호작용을 oil boom이 계류삭에 고정되어있는 경우와 oil boom의 excursion이 허용된 경우에 대해 각각 수치모의 하였다. 모의결과 oil boom의 skirt 길이가 수심의 30% 이상이고 excursion이 허용된 경우 oil spill의 차폐 기능은 극대화되는 것으로 밝혀졌다. 이와 더불어 y = 1~2 m 사이에 오일막과 해수의 경계층에서 생성된 와류가 저면으로 확산되면서 시계방향과 반 시계방향의 와류가 엇갈리게 생성되는 coherent eddies가 관측되어 수리실험을 통해 그 존재가 알려진 Kelvin-Helmholz파의 성장과정과 계면으로부터의 일탈과정이 수치모의된 것으로 판단된다.
다수의 자연 하천은 유사 이동과 하안의 침식으로 인하여 사행 하천이 발생한다. 사행 하천에서의 이차류는 원심력, 편수위로 발생하는 중력에 의한 압력차, 그리고 난류로 인하여 발생하는 응력으로 인하여 형성되며 나선형 구조 형태로 표면 유속은 외부로 향하고 하천 바닥의 유속은 안으로 향하게 된다. 이러한 2차류의 형성은 주 흐름의 특성을 변형시킨다. 자연하천에서 2차류는 주 흐름의 15-25%의 크기를 가지고 있으나, 하상의 변화, 유사의 이동 등과 연관되므로 2차류의 영향을 정확히 해석하는 것은 수리학적으로 매우 중요하다. 본 연구에서는 사행수로에서 발생하는 2차류 거동을 수치모의를 통하여 수행하였다. 우선 2차류의 분석을 위하여 실험을 통한 결과물을 비교하였다. 자연 하천의 특성을 반영할 수 있도록 서일원(2006)이 수행한 S-자 형태의 실험 수로의 실험 결과를 분석하였다. 수치 모의를 위하여 3차원 전산유체역학 프로그램을 사용하여 사행수로의 2차원 유속 구조를 모의할 수 있도록 하였다. FLOW-3D 프로그램을 이용하여 실험 결과와 모의 결과를 비교할 수 있도록 하였으며 비교 후 보정을 실시하였다. 모의는 주로 LES (Large Eddy Simulation) 모형을 통해 이루어졌으며, 이를 통하여 실험에서 획득한 결과와 비슷한 유속구조 분포를 확인할 수 있었다. 보정 및 검증 후 수치 모의를 통한 유속 데이터를 이용하여 민감도 분석을 실행하였다. 이후로는 수로의 만곡부, 조도, 수심 등 인공수로의 조건을 변경하여 수치 모의를 수행하였다. 보정된 결과를 이용하여 추가적인 모의를 통한 유속 분포 구조의 비교가 이루어졌다. 이를 통하여 각 조건이 이차류의 크기에 미치는 영향을 확인할 수 있었으며, 모의를 통한 유속분포 결과는 대체적으로 실험을 통한 이차류의 연직분포 구조와 일치하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.