• Title/Summary/Keyword: LES Simulation

Search Result 427, Processing Time 0.032 seconds

Numerical simulation and experimental study of non-stationary downburst outflow based on wall jet model

  • Yongli Zhong;Yichen Liu;Hua Zhang;Zhitao Yan;Xinpeng Liu;Jun Luo;Kaihong Bai;Feng Li
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2024
  • Aiming at the problem of non-stationary wind field simulation of downbursts, a non-stationary down-burst generation system was designed by adding a nozzle and program control valve to the inlet of the original wall jet model. The computational fluid dynamics (CFD) method was used to simulate the downburst. Firstly, the two-dimensional (2D) model was used to study the outflow situation, and the database of working conditions was formed. Then the combined superposition of working conditions was carried out to simulate the full-scale measured downburst. The three-dimensional (3D) large eddy simulation (LES) was used for further verification based on this superposition condition. Finally, the wind tunnel test is used to further verify. The results show that after the valve is opened, the wind ve-locity at low altitude increases rapidly, then stays stable, and the wind velocity at each point fluctuates. The velocity of the 2D model matches the wind velocity trend of the measured downburst well. The 3D model matches the measured downburst flow in terms of wind velocity and pulsation characteris-tics. The time-varying mean wind velocity of the wind tunnel test is in better agreement with the meas-ured time-varying mean wind velocity of the downburst. The power spectrum of fluctuating wind ve-locity at different vertical heights for the test condition also agrees well with the von Karman spectrum, and conforms to the "-5/3" law. The vertical profile of the maximum time-varying average wind veloci-ty obtained from the test shows the basic characteristics of the typical wind profile of the downburst. The effectiveness of the downburst generation system is verified.

Effect of Particle Size and Velocity Ratio on the Flow Mixing Characteristics in the Secondary Combustor (덕티드 로켓의 이차 연소기 내에서 입자의 크기와 속도비가 유동 혼합에 미치는 영향)

  • Park, Jung Shin;Park, Soon Sang;Han, Doo-Hee;Shin, Jun-Su;Sung, Hong-Gye;Kwak, Jae Su;Choi, Ho-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, the effect of velocity ratio and particle size on the flow mixing characteristics in the secondary combustor was investigated. Both PIV(Particle Image Velocimetry) technique and LES(Large Eddy Simulation) were applied. Two sizes of Polystyrene PIV seeding particle of 5 and $50{\mu}m$, and three velocity ratios of 5, 3, and 1.5 were considered. Results showed that the mixing of two air streams created reattachment and recirculation regions. The size of the recirculation region was decreased as the velocity ratio increased. For the larger particle cases, due to the increased momentum by the larger particles, the size of the recirculating regions were larger than that of the smaller particle cases and the effect of the velocity ratio was not as significant as in the smaller particle case.

Numerical Simulation on Seawater Intrusion in Coastal Aquifer using N-S Solver Based on Porous Body Model (PBM (Porous Body Model) 기반의 N-S Solver를 이용한 해안대수층의 해수침투모의)

  • Lee, Woo-Dong;Jeong, Yeong-Han;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1023-1035
    • /
    • 2015
  • This study applies 3-D N-S solver based on PBM (Porous Body Model), LED-WASS-3D ver 2.0 to directly analyze non-linear interaction of seawater-freshwater-coastal aquifer in order to simulate the seawater infiltration into coastal aquifer. This numerical simulation is the first trial in Korea, as well as unusual and new numerical analysis abroad. Firstly, to validate the applied numerical model, the validity and effectiveness was verified for the numerical model by comparing and considering it with the result of laboratory experiment for seawater-freshwater interface in coastal aquifer. And then it simulated the seawater infiltration into coastal aquifer considering the changed levels of seawater and groundwater in order to analyze the distribution characteristics of flow field and seawater-freshwater interface of coastal aquifer as the level difference between seawater and groundwater and rate of seawater level (${\Delta}h/h$) increased. In addition, the characteristics of seawater infiltration were analyzed from the vertical salinity in the coastal aquifer by ${\Delta}h/h$, which cannot be obtained from existing non-diffusion numerical models. Finally, it analyzed the effect of ${\Delta}h/h$ on the seawater infiltration distance in coastal aquifer, which was indexed.

Numerical Study on the Flow and Combustion Characteristics in Swirl-Premix Burners (스월 예혼합 버너의 유동 및 연소특성에 관한 수치적 연구)

  • Lim, Jun-Seok;Lee, Jong-Hyeok;Baek, Gwang-Min;Cho, Ju-Hyeong;Kim, Han-Seok;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • The flow field, fuel-air mixing, and behaviors of turbulent flames have been investigated using the large eddy simulation (LES) numerical technique in a premixed swirl combustor equipped with EV double cone burners. Recirculation zones are generated by the swirl burner, and lean premixed flames are formed within a distance of 0.2 m from the tip of the burner. NOx emission of 0.46 ppm is predicted at 1 atm and an air/fuel ratio of 38.7. However, most of the CO generated in a flame front continues to be oxidized as it moves toward the exit, and CO emission of 5.45 ppm is predicted at the exit. The NOx emission can be reduced by decreasing the pressure and air/fuel ratio. The characteristics of NOx emission have been investigated through RANS simulations for various fuel injection types, and it is found thereby that five-lance-hole injection produces the lowest NOx emission rate.

Numerical Simulation of Interaction between Composite Breakwater and Seabed under Regular Wave Action by olaFlow Model (olaFlow 모델에 의한 규칙파작용 하 혼성방파제-해저지반의 상호작용에 관한 수치시뮬레이션)

  • Bae, Ju-Hyun;Lee, Kwang-Ho;Jung, Uk Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.270-285
    • /
    • 2018
  • The behavior of wave-induced pore water pressure inside the rubble mound and seabed, and the resultant structure failure are investigated, which are used in design of the composite breakwater representing the coastal and harbor structures. Numerical simulation techniques have been widely used to assess these behaviors through linear and nonlinear methods in many researches. While the combination of strongly nonlinear analytical method and turbulence model have not been applied yet, which can simulate these characteristics more accurately. In this study, olaFlow model considering the wave-breaking and turbulent phenomena is applied through VOF and LES methods, which gives more exact solution by using the multiphase flow analytical method. The verification of olaFlow model is demonstrated by comparing the experimental and numerical results for the interactions of regular waves-seabed and regular waves-composite breakwater-seabed. The characteristics of the spatial distributions of horizontal wave pressure, excess-pore-water pressure, mean flow velocity and mean vorticity on the upright caisson, and inside the rubble mound and seabed are discussed, as well as the relation between the mean distribution of vorticity size and mean turbulent kinetic energy. And the stability of composite breakwater are also discussed.

On the Hydraulic Characteristics of Efficient Long Wave Energy Absorber-Eco-breaker 2 (장파 제어체 Eco-breaker 2의 수리특성)

  • Cho, Yong Jun;Kim, Ho Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.547-558
    • /
    • 2008
  • With the advent of super cargo ship due to the explosive increase in the amount of cargo shipped via seas, some mega ports are under construction in South Korea, to accommodate the super cargo ship, and some of them already enter their final phase. To sustain the harbor tranquility, mega ports usually comprise huge vertical type breakwaters which are intrinsically vulnerable to the attack of long waves. In this rationale, we present the chamber type breakwater with a circular curtain wall - Eco-breaker 2, to alleviate the reflection of long waves and numerically investigate the hydraulic characteristics of Eco-breaker 2. As a wave driver, we use the Navier-Stokes eq., the most robust wave driver, using SPH (Smoothed Particle Hydrodynamics) and LES (Large Eddy Simulation). For the verification of numerical results, we also carried out hydraulic model test. It is shown that Eco-breaker 2 can effectively alleviate the reflection of long waves with its inherited large organized eddies encompassing the water chamber and some region off the curtain wall of varying size. It is also shown that the scope and strength of large organized eddies strongly depends on the incident wave period, and the reflection coefficient can be lowered to 0.18 by tuning the size of water chamber such that resident time at the chamber is just short of the half period of incident waves. Based on these results, we present the specification of Eco-breaker 2 to boost its use on the development of water environment friendly harbor worldwide.

Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression (레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

Large eddy simulation of flow around a stay cable with an artificial upper rivulet

  • Zhao, Yan;Du, Xiaoqing;Gu, Ming;Yang, Xiao;Li, Junjun;He, Ping
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.215-229
    • /
    • 2018
  • The appearance of a rivulet at the upper surface of a stay cable is responsible for rain-wind-induced vibration (RWIV) of cables of cable-stayed bridges. However, the formation mechanism of the upper rivulet and its aerodynamic effects on the stay cable has not been fully understood. Large eddy simulation (LES) method is used to investigate flow around and aerodynamics of a circular cylinder with an upper rivulet at a Reynolds number of 140,000. Results show that the mean lift coefficients of the circular cylinder experience three distinct stages, zero-lift stage, positive-lift stage and negative-lift stage as the rivulet located at various positions. Both pressure-induced and friction-induced aerodynamic forces on the upper rivulet are helpful for its appearance on the upside of the stay cable. The friction-induced aerodynamic forces, which have not been considered in the previous theoretical models, may not be neglected in modeling the RWIV. In positive-lift stage, the shear layer separated from the upper rivulet can reattach on the surface of the cylinder and form separation bubbles, which result in a high non-zero mean lift of the cylinder and potentially induces the occurrence of RWIV. The separation bubbles are intrinsically unsteady flow phenomena. A serial of small eddies first appears in the laminar shear layer separated from the upper rivulet, which then coalesces and reattaches on the side surface of the cylinder and eventually sheds into the wake.

Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance (노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

THE AERO-ACOUSTIC ANALYSIS FOR EACH PART OF DOUBLE ARM PANTOGRAPH OF HIGH SPEED TRAIN (전산해석을 통한 고속철도 더블암 팬터그래프의 부재별 공력소음특성 연구)

  • Lee, S.A.;Kang, H.M.;Lee, Y.B.;Kim, C.W.;Kim, K.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.61-66
    • /
    • 2015
  • In this study, an aero-acoustic analysis around pantograph of a high speed train is performed. Computational technique and grid system is validated with wind tunnel test result and unsteady acoustic pressure data are used for analyzing noise level of each part of pantograph. FLUENT is used for flow analysis and LES(Large Eddy Simulation) is applied for analyzing turbulent flow. For acoustic analysis, Ffowcs Williams-Hawkings(FW-H) acoustics model is used and it bring the aero-acoustic characteristic of pantograph. As the result, contact strip, knee, substructure of pantograph is confirmed as a main source of aero-acoustic noise and it is dealt in various frequencies. The result is expected to help building improved grid system.