• Title/Summary/Keyword: LES 해석

Search Result 244, Processing Time 0.023 seconds

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Model (Flow-3D 모형을 이용한 해상풍력기초 세굴현상 분석)

  • Park, Young-Jin;Kim, Tae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.690-696
    • /
    • 2017
  • Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

Dissipation and Control of Flow Instability in a Rectangular Swirl Combustor using Cooling Flow Injection (사각 스월 연소기에서 냉각 유동을 이용한 연소기 내 유동 불안정 감쇠 및 조종)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.236-241
    • /
    • 2009
  • To identify turbulent flow characteristics of non-reacting case resulted from cooling flow injection in a rectangular swirl combustor, 3D Large Eddy Simulation(LES) was implemented and Proper Orthogonal Decomposition(POD) analysis was used for post-processing. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. It was observed that increase in speed of shear layer resulted from the inflow of cooling flow caused intensified vorticity magnitude in central toroidal recirculation zone. In the case of vorticity magnitude in corner recirculation zone, however, was weakened. In addition, pressure fluctuation in combustor was damped down and longitudinal acoustic mode was significantly dissipated

  • PDF

Wave Breaking Characteristics due to Shape and Plane Arrangement of the Submerged Breakwaters (잠제 제원 및 평면배치에 따른 쇄파특성)

  • Lee, Woo-Dong;Hur, Dong-Soo;Huh, Jung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.116-122
    • /
    • 2010
  • The aim of this study is to examine the effects of shape and plane arrangement of submerged breakwaters on 3-D wave breaking characteristics over them. First, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve Structure Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D), has been validated by a comparison with Goda's equation for breaking wave heights. And then, using the numerical results, the wave breaking points over the crest of submerged breakwaters have been examined in relation to the shape and plane arrangement of submerged breakwaters. Moreover, the wave height distribution and upper flow around submerged breakwaters have been also discussed, as well as the distribution of the wave breaking points over the beach.

On Variation Characteristics of Run-up Height over Beach due to Plane Arrangement of Submerged Breakwaters (잠제의 배치형상에 따른 연안의 처오름 변화에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Lee, Hyun-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-460
    • /
    • 2006
  • This study is to investigate the variation characteristics of run-up height over sandy beach due to the plane distribution of submerged breakwaters. In this study, Three-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly WAve Structure Seabed interaction (hereafter, LES-WASS-3D) has been newly developed. A comparison between the numerical model and existing experimental results was made to verify accuracy of newly proposed LES-WASS-3D model, and showed fairly nice agreement. In addition, based on the LES-WASS-3D model, the variation characteristics of run-up height over sandy beach are discussed with relation to the offshore distance and opening width of submerged breakwaters.

  • PDF

A Study on Effect of Beachface Gradient on 3-D Currents around the Open Inlet of Submerged Breakwaters (해빈경사에 따른 잠제 개구부의 3차원적인 흐름특성에 관한 연구)

  • Lee, Woo-Dong;Hur, Dong-Soo;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • The aim of this study was to survey the effects of the beachface gradient on 3-D currents around the open inlets of submerged breakwaters. First, the numerical model was validated by a comparison with existing experimental data. This model is able to consider the flow through a porous medium with inertial, laminar, and turbulent resistance terms, i.e. simulate directly WAve?Structure?Seabed/Sandy beach interaction, and can determine the eddy viscosity with a LES turbulent model in a 3-Dimensional wave field (LES-WASS-3D). Using the numerical results of this model, the 3-D currents around the open inlets of submerged breakwaters were examined in relation to the beachface gradient. Moreover, the wave height distribution and mean flow around them are also discussed, as well as the distribution of the wave breaking points over the crest.

Numerical Analysis on Feedback Mechanism of Supersonic Impinging Jet using LES (LES를 이용한 초음속 충돌제트의 피드백 메커니즘에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.51-59
    • /
    • 2017
  • Steam jets ejected from a rupture zone of high energy pipes may cause damage to adjacent structures. This event could lead to more serious accidents in nuclear power plants. Therefore, to prevent serious accidents, high energy pipes of nuclear power plants are designed according to the ANSI / ANS 58.2 technical standard. However, the US Nuclear Regulatory Commission (USNRC) has recently pointed out non-conservatism in existing high energy pipe fracture evaluation methods, and required the assessment of the unsteady load of the jet caused by a potential feedback mechanism as well as the impact range of steam jet, the jet impact loads and the blast wave effects at the initial breakage stage. The potential feedback mechanism refers to a phenomenon in which a vortex formed by impingement jets amplifies vortex itself and induces jet vibration in a shear layer. In this study, CFD methodology using the LES turbulence model is established and numerical analysis is carried out to evaluate the dynamic behavior of impingement jets and the potential feedback mechanism during jet impingement. Obtained results have been compared with an empirical correlation and experiment.

Interaction Effects of Turbulent Flow and Chemical Reaction in a Swirl Combustor (스월연소기의 난류와 화학반응 간섭효과)

  • Sung, Hong-Gye;Kim, Jong-Chan;Yang, Vigor;Cha, Bong-Jun;Ahn, I-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.71-74
    • /
    • 2007
  • Large Eddy Simulation(LES) has been conducted to insight interaction effects of turbulent flow and chemical reaction of a lean-Premixed swirl combustor. The unsteady turbulent flame is carefully simulated so that the motion of flow and flame can be characterized in detail. Fuel lumps escaping from the primary combustion zone move downstream and consequently produce local hot spots conveying large vortical structures in the azimuthal direction. The correlation between pressure oscillation and unsteady heat release is examined by the spatial and temporal Rayleigh parameter.

  • PDF

Large Eddy Simulation of Turbulent Flow around a Ship Model Using Message Passing Interface (병렬계산기법을 이용한 선체주위 점성유동장의 LES해석)

  • Choi, Hee-Jong;Yoon, Hyun-Sik;Chun, Ho-Hwan;Kang, Dae-Hwan;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.76-82
    • /
    • 2006
  • The large-eddy simulation(LES) technique, based an a message passing interface method(MPI), was applied to investigate the turbulent flaw phenomena around a ship. The Smagorinski model was used in the present LES simulation to simulate the turbulent flaw around a ship. The SPMD(sidsngle program multiple data) technique was used for parallelization of the program using MPI. All computations were performed an a 24-node PC cluster parallel machine, composed of 2.6 GHz CPU, which had been installed in the Advanced Ship Engineering Research Center(ASERC). Numerical simulations were performed for the Wigley hull, and the Series 60 hull(CB=0.6) using 1/4-, 1/2-, 1- and 2-million grid systems and the computational results had been compared to the experimental ones.