• Title/Summary/Keyword: LER Value

Search Result 5, Processing Time 0.022 seconds

Interaction between different nitrogen fertilizer levels and maize-bean intercropping patterns

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.269-277
    • /
    • 2012
  • In order to investigate the effects of different maize-bean intercropping patterns, and of nitrogen fertilizers on morphological and yield related traits, a factorial study based on Randomized Complete Block Design (RCBD) was performed during the 2010 and 2011 growing seasons in a research filed of Shiraz University, Iran. The first factor of the study was seven different ratios of Maize-Bean intercropping system (Maize sole cropping, Bean sole cropping, and intercropping of maize/bean at the ratios of 1/3, 1/1, 2/3, 3/2 and 3/1) and the second factor was three nitrogen (N) fertilizer application levels (0, 100 and 200 kg N/ha). Results showed that with respect to increasing the levels of N fertilizer, the yield of bean sole cropping decreased but the yield of maize sole cropping increased. On the other hand, in intercropping systems with N fertilizer application, the yield of both crops increased. Results of total land equivalent ratio (LER) for both crops showed that the highest LER value under both 100 and 200 kg N/ha application was that of M1B1 (1 seed of maize after 1 seed of bean, consecutively, on a row with same distance). Under no N fertilizer application the highest LER value was that of M2B3 (2 seeds of maize after 3 seeds of bean, consecutively, on a row with same distance). Overall, it can be concluded that M1B1 is the best intercropping pattern in maize-bean intercropping systems and that the application of N fertilizer can be effective within practical settings of intercropping agriculture, resulting in higher yields.

Potential Benefits of Intercropping Corn with Runner Bean for Small-sized Farming System

  • Bildirici, N.;Aldemir, R.;Karsli, M.A.;Dogan, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.836-842
    • /
    • 2009
  • The objectives of this study were to evaluate potential benefits of intercropping of corn with runner bean for a smallsized farming system, based on land equivalent ratio (LER) and silage yield and quality of corn intercropped with runner bean (Phaseolus vulgaris L.), in arid conditions of Turkey under an irrigation system. This experiment was established as a split-plot design in a randomized complete block, with three replications and carried out over two (consecutive) years in 2006 and 2007. Seven different mixtures (runner bean, B and silage corn sole crop, C, 10% B+90% C, 20% B+80% C, 30% B+70% C, 40% B+60%C, and 50% B+50%C) of silage corn-runner bean were intercropped. All of the mixtures were grown under irrigation. The corn-runner bean fields were planted in the second week of May and harvested in the first week of September in both years. Green beans were harvested three times each year and green bean yields were recorded each time. After the 3rd harvest of green bean, residues of bean and corn together were randomly harvested from a 1 $m^{2}$ area by hand using a clipper when the bean started to dry and corn was at the dough stage. Green mass yields of each plot were recorded. Silages were prepared from each plot (triplicate) in 1 L mini-silos. After 60 d ensiling, subsamples were taken from this material for determination of dry matter (DM), pH, organic acids, chemical composition, and in vitro DM digestibility of silages. The LER index was also calculated to evaluate intercrop efficiencies with respect to sole crops. Average pH, acetic, propionic and butyric acid concentrations were similar but lactic acid and ammonia-N levels were significantly different (p<0.05) among different mixtures of bean intercropped with corn. Ammonia-N levels linearly increased from 0.90% to 2.218 as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio. While average CP content increased linearly from 6.47 to 12.45%, and average NDF and ADF contents decreased linearly from 56.17 to 44.88 and from 34.92 to 33.51%, respectively, (p<0.05) as the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, but DM and OM contents did not differ among different mixtures of bean intercropped with corn (p>0.05). In vitro OM digestibility values differed significantly among bean-corn mixture silages (p<0.05). Fresh bean, herbage DM, IVOMD, ME yields, and LER index were significantly influenced by percentage of bean in the mixtures (p<0.01). As the percentage of bean increased in the mixtures up to a 50:50 seeding ratio, yields of fresh bean (from 0 to 24,380 kg/ha) and CP (from 1,258.0 to 1,563.0 kg/ha) and LER values (from 1.0 to 1.775) linearly increased, but yields of herbage DM (from 19,670 to 12,550 kg/ha), IVOMD (from 12,790 to 8,020 kg/ha) and ME (46,230 to 29,000 Mcal/ha) yields decreased (p<0.05). In conclusion, all of the bean-corn mixtures provided a good silage and better CP concentrations. Even though forage yields decreased, the LER index linearly increased as the percentage of bean increased in the mixture up to a 50:50 seeding ratio, which indicates a greater utilization of land. Therefore, a 50:50 seeding ratio seemed to be best for optimal utilization of land in this study and to provide greater financial stability for labor-intensive, small farmers.

Effect of Mixing Pattern of Different Types of Bioreactor on Enzymatic Hydrolysis of Cellulose (각종 섬유질 효소당화 반응조내의 현탁액의 혼합교반양상이 효소당화에 미치는 영향)

  • 박진서;박동찬이용현
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.221-228
    • /
    • 1989
  • Celluose is an insoluble substrate, therefore, a proper mixing of the cellulose suspension is essential for an effective enzymatic hydrolysis. To study the effect of mixing motion of various enzyme reactors on enzymatic hydrolysis of cellulose, three distinct types of biroreator: vertical impeller type bioreator(VITB), horizontal paddle type bioreactor(HPTB), and tumbling drum type bioreactor(TDTB), were assembled and their performance was compared. The optimal agitation speed was 100rpm for VITB and HPTB, 200rpm for TDTB. The saccharification efficiency of each reactor was compared under the optimal agitation intensity. The highest degree of saccharification was achieved in the case of VITB, especially, at high cellulose concentration. The VITB seems to be the most suitable type of bioreactor that can maintain proper mixing pattern for effective enzyme reaction. In the view of energy consumption, the TDTB showed the lowest value: however, the energy consumption was rapidly increased at high concentration of celluose. To dertermine the most suitable type of bioreactor, the entire process, including substrate cost, substrate concentration, and feasibility of scale-up, needs to be evaluated.

  • PDF

Performance and Variation-Immunity Benefits of Segmented-Channel MOSFETs (SegFETs) Using HfO2 or SiO2 Trench Isolation

  • Nam, Hyohyun;Park, Seulki;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.427-435
    • /
    • 2014
  • Segmented-channel MOSFETs (SegFETs) can achieve both good performance and variation robustness through the use of $HfO_2$ (a high-k material) to create the shallow trench isolation (STI) region and the very shallow trench isolation (VSTI) region in them. SegFETs with both an HTI region and a VSTI region (i.e., the STI region is filled with $HfO_2$, and the VSTI region is filled with $SiO_2$) can meet the device specifications for high-performance (HP) applications, whereas SegFETs with both an STI region and a VHTI region (i.e., the VSTI region is filled with $HfO_2$, and the STI region is filled with $SiO_2$) are best suited to low-standby power applications. AC analysis shows that the total capacitance of the gate ($C_{gg}$) is strongly affected by the materials in the STI and VSTI regions because of the fringing electric-field effect. This implies that the highest $C_{gg}$ value can be obtained in an HTI/VHTI SegFET. Lastly, the three-dimensional TCAD simulation results with three different random variation sources [e.g., line-edge roughness (LER), random dopant fluctuation (RDF), and work-function variation (WFV)] show that there is no significant dependence on the materials used in the STI or VSTI regions, because of the predominance of the WFV.

Ziziphus spina christifor Sustainable Agroforestry Farming in Arid Land of Khartoum State of Sudan

  • Mustafa Abdalla Nasre Aldin;Hussein Alawad Seid Ahmed;Mohamed El Mukhtar Ballal;Adil Mahgoub Farah
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • Cow pea (Vigna unguiculata) was intercropped with Ziziphus spina-christi as summer forage in two consecutive seasons of 2017 and 2018. The aims to find out suitable agroforestry practice for saline soils of Khartoum State. And to investigate effect of tree spacing on forage biomass yield under semi -irrigated systems. Completely randomized block design with 3 replicates was conducted for this trial. Thus Z.spina-christi that fixed at 4×4 m was intercropped with cowpea at 1 m and 1.5 m spacing from trees trunk. Tree growth parameters were measured in terms of tree height, tree collar diameter, tree crown diameter and fruit yield per tree. While crop were parameters were determined in terms of plant height, number of plant, forage biomass yield per ha and land equivalent ratio. Soil profile of 1×1 m and 1.5 m depth was excavated and its features were described beside its chemical and physical properties were analyzed for 0-10 cm, 0-30 cm, and 30-60 cm and 60-100 cm layers. The results revealed that soil pH, CaCO3, SAR, ESP, and EC ds/m were increased by increasing soil depths. Meanwhile tree growth in terms of tree height was significant in the first season 2017 when compared with tree collar diameter and tree crown diameter. Also significant differences were recorded for tree growth when compared with sole trees in the second season in 2018. Tree fruit showed marked variations between the two seasons, but it was higher under intercropping particularly at ZS2. Crop plant height was highly significant under sole cropping than intercropping in first season in 2017. In contrast forage biomass yield was significant under intercropping in ZS1 and ZS2 treatments. Land equivalent ratio was advantageous under this agroforestry system particularly under ZS2. Thus it recorded 5 and 9 for ZS2 in the two consecutive seasons respectively. Therefore, it is feasible to introduce this agroforestry system under such arid lands to provide summer forage yield of highly nutritive value and low cost for animals feed as well as to increase farmers' income and to halt desertification and to sequester carbon.