• Title/Summary/Keyword: LEO satellite networks

Search Result 19, Processing Time 0.021 seconds

Distinction between HAPS and LEO Satellite Communications under Dust and Sand Storms Levels and other Attenuations

  • Harb, Kamal
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.382-388
    • /
    • 2022
  • Satellite communication for high altitude platform stations (HAPS) and low earth orbit (LEO) systems suffer from dust and sand (DU&SA) storms in the desert regions such as Saudi Arabia. These attenuations have a distorting effect on signal fidelity at high frequency of operations. This results signal to noise ratio (SNR) to dramatically decreasing and leads to wireless transmission error. The main focus in this paper is to propose common relations between HAPS and LEO for the atmospheric impairments affecting the satellite communication networks operating above Ku-band crossing the propagation path. A double phase three dimensional relationship for HAPS and LEO systems is then presented. The comparison model present the analysis of atmospheric attenuation with specific focus on sand and dust based on particular size, visibility, adding gaseous effects for different frequency, and propagation angle to provide system operations with a predicted vision of satellite parameters' values. Skillful decision and control system (SD&CS) is proposed to control applied parameters that lead to improve satellite network performance and to get the ultimate receiving wireless signal under bad weather condition.

Adaptive Beamwidth Control Technique for Low-orbit Satellites for QoS Performance improvement based on Next Generation Military Mobile Satellite Networks (차세대 군 모바일 위성 네트워크 QoS 성능 향상을 위한 저궤도 위성 빔폭 적응적 제어 기법)

  • Jang, Dae-Hee;Hwang, Yoon-Ha;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.1-12
    • /
    • 2020
  • Low-Orbit satellite mobile networks can provide services through miniaturized terminals with low transmission power, which can be used as reliable means of communication in the national public disaster network and defense sector. However, the high traffic environment in the emergency preparedness situation increases the new call blocking probability and the handover failure probability of the satellite network, and the increase of the handover failure probability affects the QoS because low orbit satellites move in orbit at a very high speed. Among the channel allocation methods of satellite communication, the FCA shows relatively better performance in a high traffic environment than DCA and is suitable for emergency preparedness situations, but in order to optimize QoS when traffic increases, the new call blocking and the handover failure must be minimized. In this paper, we propose LEO-DBC (LEO satellite dynamic beam width control) technique, which improves QoS by adaptive adjustment of beam width of low-orbit satellites and call time of terminals by improving FCA-QH method. Through the LEO-DBC technique, it is expected that the QoS of the mobile satellite communication network can be optimally maintained in high traffic environments in emergency preparedness situations.

Game Theory-Based Scheme for Optimizing Energy and Latency in LEO Satellite-Multi-access Edge Computing

  • Ducsun Lim;Dongkyun Lim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.7-15
    • /
    • 2024
  • 6G network technology represents the next generation of communications, supporting high-speed connectivity, ultra-low latency, and integration with cutting-edge technologies, such as the Internet of Things (IoT), virtual reality, and autonomous vehicles. These advancements promise to drive transformative changes in digital society. However, as technology progresses, the demand for efficient data transmission and energy management between smart devices and network equipment also intensifies. A significant challenge within 6G networks is the optimization of interactions between satellites and smart devices. This study addresses this issue by introducing a new game theory-based technique aimed at minimizing system-wide energy consumption and latency. The proposed technique reduces the processing load on smart devices and optimizes the offloading decision ratio to effectively utilize the resources of Low-Earth Orbit (LEO) satellites. Simulation results demonstrate that the proposed technique achieves a 30% reduction in energy consumption and a 40% improvement in latency compared to existing methods, thereby significantly enhancing performance.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.

A Novel Adaptive Routing Algorithm for Delay-Sensitive Service in Multihop LEO Satellite Network

  • Liu, Liang;Zhang, Tao;Lu, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3551-3567
    • /
    • 2016
  • The Low Earth Orbit satellite network has the unique characteristics of the non-uniform and time-variant traffic load distribution, which often causes severe link congestion and thus results in poor performance for delay-sensitive flows, especially when the network is heavily loaded. To solve this problem, a novel adaptive routing algorithm, referred to as the delay-oriented adaptive routing algorithm (DOAR), is proposed. Different from current reactive schemes, DOAR employs Destination-Sequenced Distance-Vector (DSDV) routing algorithm, which is a proactive scheme. DSDV is extended to a multipath QoS version to generate alternative routes in active with real-time delay metric, which leads to two significant advantages. First, the flows can be timely and accurately detected for route adjustment. Second, it enables fast, flexible, and optimized QoS matching between the alternative routes and adjustment requiring flows and meanwhile avoids delay growth caused by increased hop number and diffused congestion range. In addition, a retrospective route adjustment requesting scheme is designed in DOAR to enlarge the alternative routes set in the severe congestion state in a large area. Simulation result suggests that DOAR performs better than typical adaptive routing algorithms in terms of the throughput and the delay in a variety of traffic intensity.

Visibility Analysis of Iridium Communication for SNIPE Nano-Satellite (SNIPE 초소형위성용 Iridium 통신 모듈의 가시성 분석)

  • Cho, Dong-Hyun;Kim, Hongrae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Compared to the continuous increase of domestic nano-satellite development cases, the initial communication success rate is relatively low. In a situation where communication cases of LEO satellites using commercial satellite communication networks are increasing recently. In this situation, the SNIPE project developed by the KASI(Korea Astronomy and Space Science Institute), KARI(Korea Aerospace Research Institute), and Yonsei University apply an Iridium module for communication test to the SNIPE nano-satellites. Therefore, in this paper, the visibility analysis of the iridium module on the SNIPE satellite was analyzed under considering the orbital and communication environment of the iridium satellite constellation and the attitude control mode. In the case of LEO satellites, the communication possibility was limited due to the relatively small iridium communication coverage for high altitude and the high doppler shift considered in the iridium communication network. For this reason, in this paper, it could be simulated that there was a more performance difference according to the difference in relative RAAN(Right Ascension of Ascending Node) angle with the Iridium constellation. Finally, by checking the visibility of communication module under the tumbling situation that occurred during the initial deployment of the nano-satellite, the possibility of using the iridium communication technology was analyzed.

Analysis on ITU Requirements for Acquiring Space Location of Low Earth Orbit Satellite (지구저궤도위성의 우주공간 확보를 위한 ITU 요구사항 분석)

  • Chung, Dae-Won;Kim, Hee-Seob;Kim, Eung-Hyun;Kim, Gyu-Su;Choi, Hae-Jin
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 2007
  • In order to operate Low Earth Orbit(LEO) satellite on space, technical requirements and administrative procedure which are defined by the International Telecommunication Union(ITU) should be followed on satellite development. Main technical requirements to follow are purpose of use, bandwidth, Radio Frequency(RF) intensity, and constraints on new satellite network about existing satellite networks according to frequency spectrum. Such ITU's requirements are reflected and designed on system specification and space to ground interface control document. In order to have a right and protection about using the satellite network on space, the satellite network has to be registered on Master International Frequency Register(MIFR) and procedure for this has to be followed. Coordination with countries raising objection is needed in order to register. And reference and method for coordination are also needed.

  • PDF

Space Economy, Ecosystem Strategies for LEO 5G-NTN Space Communications (우주경제, LEO 5G-NTN 우주통신 생태계 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-66
    • /
    • 2023
  • The latest global issues are the Space economy and low-orbit Space communication. 3GPP announced Release 17 standardization in June 2022, and in this regard, the United States prepared a strategy to enhance the competitiveness of the low-orbit 5G-NTN Space industry, and create an ecosystem at the national level in March 2023. Global smartphone semiconductor manufacturers have announced the development and verification results of standard-based chip technology, and satellite communication operators are launching low-orbit 5G-NTN Space communication services and rate products through convergence between terrestrial communication networks. This study diagnoses the current status of Korea's low-orbit 5G-NTN space communication ecosystem. We present our ecosystem creation strategy in terms of fair competition in the market, the service legal system, and the national R&D governance system.

Enhancing Installation Security for Naval Combat Management System through Encryption and Validation Research

  • Byeong-Wan Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.121-130
    • /
    • 2024
  • In this paper, we propose an installation approach for Naval Combat Management System(CMS) software that identifies potential data anomalies during installation. With the popularization of wireless communication methods, such as Low Earth Orbit(LEO) satellite communications, various utilization methods using wireless networks are being discussed in CMS. One of these methods includes the use of wireless network communications for installation, which is expected to enhance the real-time performance of the CMS. However, wireless networks are relatively more vulnerable to security threats compared to wired networks, necessitating additional security measures. This paper presents a method where files are transmitted to multiple nodes using encryption, and after the installation of the files, a validity check is performed to determine if there has been any tampering or alteration during transmission, ensuring proper installation. The feasibility of applying the proposed method to Naval Combat Systems is demonstrated by evaluating transmission performance, security, and stability, and based on these evaluations, results sufficient for application to CMS have been derived.