• Title/Summary/Keyword: LED-UV

Search Result 329, Processing Time 0.027 seconds

Optical Properties of UV LEDs depending on Encapsulate Method using Silicone Encapsulants with Different Refractive Indices (굴절률이 다른 실리콘 봉지재의 봉지 방법에 따른 UV-A LED의 광 특성에 관한 연구)

  • Kim, Wan-Ho;Koo, Dai-Hyoung;Noh, Ju-Hyun;Lee, Kyung-Won;Jeon, Sie-Wook;Kim, Jae-Pil;Yeo, In-Seon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.39-44
    • /
    • 2015
  • Optical characteristics including the radiant flux and viewing angle of UV LEDs were investigated according to both silicone encapsulants with different refractive indexes and lens shapes. Lead frame was fabricated using the enhanced heat dissipation characteristics with a heat slug structure and the reflector based on EMC(Epoxy Mold Compound) material. Four types of lens shapes were designed and their optical characteristics depending on the refractive index of silicone encapsulants were evaluated. The maximum radiant flux can be achieved when the height of lens are 1.32mm and 1.08mm for silicone encapsulants with low and high refractive indexes, respectively. Depending on the encapsulating method, the viewing angle changes from $148.9^{\circ}$ to $130.2^{\circ}$ for low refractive index and from $145.3^{\circ}$ to $136.8^{\circ}$ for high refractive index. As a result, it is found that the optical characteristics of UV LEDs can be controled through both encapsulating method and the refractive index of encapsulants.

Preparation of UV Curable Anti-Glare Coating Films Using Micrometer-Sized Silica Particles (마이크로미터 크기의 실리카 입자를 이용한 UV 경화형 눈부심 방지 코팅 필름 제조)

  • Kim, Tae Hyoung;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.165-173
    • /
    • 2021
  • Anti-glare (AG) coating films are applied to various display fields such as liquid crystal displays, LED lighting, and touch panels. In this study, micrometer-sized silica particles were added as fillers in the UV-curable coating solutions to provide anti-glare effect. During this process, the effects of the particle size, content, stirring time, and mixing ratio of silica particles of different sizes were investigated on the haze values and visible light transmittance of the coating films. As a result, as the size of the silica particles increased and the content of the silica particles increased, the haze values increased, but the visible light transmittance decreased. On the other hand, the stirring time did not significantly affect the haze value and transmittance of coating films. In addition, as the mixing ratio of large-sized silica particles increased, the haze value increased, but on the contrary, the visible light transmittance decreased.

Post-harvest LED and UV-B Irradiation Enhance Antioxidant Properties of Asparagus Spears (수확 후 LED와 UV-B 조사에 의한 아스파라거스 순의 항산화 기능 향상)

  • Yoo, Nam-Hee;Jung, Sun-Kyun;Lee, Chong Ae;Choi, Dong-Geun;Yun, Song Joong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.188-198
    • /
    • 2017
  • Asparagus (Asparagus officinalis L.) spears were treated with white (color temperature 4,500 k), blue (peak 450 nm), and red (peak 660 nm) light-emitting diodes (LEDs) at a photosynthetic photon flux density (PPFD) of $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h, and UV-B (280 nm) at 0.5 kJ or 1.0 kJ to determine the effect on agronomic characteristics, antioxidant phytochemicals, and antioxidant activity. The fresh weight, length, and width of spears were not affected by light quality treatments. The free sugars and chlorophyll contents were increased by 9 and 41%, respectively in the UV-0.5 kJ treatments. Among the antioxidant phytochemicals (vitamin C, total phenol, rutin, and total flavonoid), vitamin C was most greatly affected by the light treatments. Vitamin C content was significantly increased in asparagus spears subjected to the white (114%), red (137%), and UV-0.5 kJ(127%) treatments compared to the control. By contrast, rutin, total phenol, and total flavonoid content were increased only in samples subjected to the red and UV-0.5 kJ treatment. Furthermore, antioxidant activity, as measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, increased in white, red, and UV-0.5 kJ treatments by about 43, 41, and 43%, respectively, compared to the control. These results suggest that postharvest treatment of asparagus spears with red light at $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for 12 h or with UV-B (280 nm) at 0.5 kJ could enhance the functional quality of the asparagus spears by increasing the content of phytochemicals like vitamin C, rutin, total phenolics, and total flavonoids.

Temperature dependency of the ZnO nanostructures grown by metalorganic chemical vapor deposition (MOCVD법으로 성장한 ZnO 나노구조의 온도 의존성)

  • Choi, Mi-Kyung;Kim, Dong-Chan;Kong, Bo-Hyun;Kim, Young-Yi;Ahn, Chel-Hyun;Han, Won-Suk;Mohanta, Sanjay Kumar;Cho, Hyung-Koun;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.20-20
    • /
    • 2008
  • 최근 LEDs가 동일 효율의 전구에 비해 에너지 절감 효과 크며 신뢰성이 뛰어나다기 때문에 기존 광원을 빠르게 대체해 나가고 있다. 특히 자외선 파장을 가지는 LEDs는 발열이 낮아 냉각장치가 필요 없으며, 수명이 길어 기존 UV lamp에 비해 많은 장점을 가지고 있기 때문에 많은 관심을 밭고 있다. 그럼에도 불구하고 자외선 LEDs는 제조 단가가 높고 power가 낮아 소요량이 많은 등 아직 해결해야 할 부분이 많기 때문에 이를 해결하기 위해 여러가지 재료와 다양한 구조가 고려되고 있다. 그 중 ZnO는 II-VI족 화합물 반도체로써 UV영역의 넓은 밴드갭(3.37eV)을 가지는 투명한 재료이다. 특히 ZnO는 60meV의 큰 엑시톤 결합에너지를 가지며, 가시광 영역에서 높은 투과율을 가지고, 상온에서 물리적, 화학적으로 안정하기 때문에 UV sensor, UV laser, UV converter, UV LEDs 등 광소자 분야에서 연구가 활발히 진행되고 있다. ZnO가 광소자의 발광재료로써 높은 효율을 얻기 위해서는 결정성을 높여 내부 결함을 감소시키며, 발광 면적을 높일 수 있는 구조가 요구된다. 특히 MOCVD 법으로 성장한 나노막대는 에피성장되어 높은 결정성을 기대할 수 있으며, 성장 조건을 조절함으로써 나노막대의 aspect ratio와 밀도 제어할 수 있기 때문에 표면적을 효과적으로 넓혀 높은 발광효율을 얻을 수 있다. 본 실험에서는 MOCVD 법으로 실리콘과 사파이어 기판 위에 다양한 성장 온도를 가진 나노구조를 성장 시키고 온도에 따른 형상 변화와 특성을 평가하였다. ZnO 의 성장온도가 약 $360^{\circ}C$ 일 때, 밀도가 조밀하고 기판에 수직 배열한 균일한 나노막대가 성장되었으며 우수한 결정성, 광학적 특성이 나타남을 SEM, TEM, PL, XRD를 사용하여 확인하였다.

  • PDF

Excitation Based Tunable Emissions from the Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ : $Sm^{3+}/Tb^{3+}$ Phosphors for Novel Inorganic LEDs

  • Raju, G. Seeta Rama;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.156-156
    • /
    • 2011
  • Nanocrystalline $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were prepared by solvothermal reaction method for light emitting diode (LED) and field emission display (FED) applications. The XRD patterns of these phosphors confirmed their oxyapatite structure in the hexagonal lattice. The visible luminescence properties of these phosphors were investigated by exciting with ultraviolet (UV) or near-UV light and low voltage electron beam. The photoluminescence (PL) properties of $Ca_2Gd_8Si_6O_{26}$ (CGS) : $Sm^{3+}$ and CGS : $Tb^{3+}/Sm^{3+}$ phosphors were investigated as a function of $Sm^{3+}$ concentration. Cathodoluminescence (CL) properties were examined by changing the acceleration voltage. The CGS : $Sm^{3+}$ showed the dominant orange emission due to the $^4G_{5/2}{\rightarrow}^6H_{7/2}$ transition. The CGS : $Tb^{3+}/Sm^{3+}$ phosphor showed the green, white and orange emissions when excited with 275, 378, and 405 nm wavelengths, respectively. The chromaticity coordinates of these phosphors were comparable to or better than those of standard phosphors for LED or FED devices.

  • PDF

Phototactic behavior 10: phototactic behavioral effects of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) adults to different light-emitting diodes of seven wavelengths

  • Park, Jun-Hwan;Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.95-98
    • /
    • 2016
  • Phototactic behavioral responses of the Indian meal moth, Plodia interpunctella ($H{\ddot{u}}bner$), adults were determined to different light-emitting diodes (LEDs) of seven wavelengths, and their behavioral responses were compared to that using a commercial luring lamp (BLB) under laboratory conditions. Based on the attractive responses under optimal light conditions (60 lx luminance intensity and 30 min light exposure time), the green LED ($520{\pm}5nm$) showed the highest attractive rate ($520{\pm}5nm$, 52.2 %), followed by the blue LED ($470{\pm}10nm$, 33.9 %), the yellow LED ($590{\pm}5nm$, 32.2 %), BLB (28.9 %), UV LED (365 nm, 22.8 %), the red LED ($625{\pm}10nm$, 14.5 %), the white LED (450-620 nm, 10.6 %), and IR LED (730 nm, 9.5 %). In addition, the green LED to P. interpunctella adults was approximately 1.81 times more attractive than BLB. These results indicate that the green LED could be most useful for monitoring of P. interpunctella adults.

Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua (환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진)

  • Kyung Woon Kim;Cheol Ho Hwang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.307-315
    • /
    • 2022
  • Artemisinin is a secondary metabolite of Artemisia annua that shows potent anti-malarial, anti-bacterial, antiviral, and anti-tumor effects. The supply of artemisinin depends on its content in Artemisia annua, in which various environmental factors can affect the plant's biosynthetic yield. In this study, the effects of different light-emitting diode (LED)-irradiation conditions were tested to optimize the germination and growth of Artemisia annua for the enhanced production of artemisinin. Specifically, the ratio between the red and blue lights in the irradiating LED was varied for investigation as follows: [Red : Blue] = [6 : 4], [7 : 3], and [8 : 2]. Furthermore, additional stress factors like UV-B-irradiation (1,395 ㎼/cm2), low temperature (4℃), and dehydration were also explored to induce hormetic expressions of ADS, CYP, and ALDH1, which are essential genes for the biosynthesis of artemisinin. Quantitative polymerase chain reaction (qPCR) was used to analyze the expression levels of the respective genes and their correlation with the specified conditions. [8 : 2] LED-irradiation was the most optimal among the tested conditions for the cultivation of Artemisia annua in terms of both fresh and dry weights post-harvest. For the production of artemisinin, however, [7 : 3] LED-irradiation with dehydration for six hours pre-harvest was the most optimal condition by inducing around twofold enhancement in the biosynthetic yield of artemisinin. As expected, a correlation was observed between the expression levels of the genes and the contents of artemisinin accumulated.