• Title/Summary/Keyword: LED driver IC

Search Result 47, Processing Time 0.037 seconds

A Study of Evaluation for Driver IC using LED (LED 광원의 Driver IC에 대한 성능평가의 연구)

  • Cheon, Woo-Young;Song, Sang-Bin;Kim, Gi-Hoon;Kim, Jin-Hong;Park, Jung-Wook;Lee, Hyun-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.85-88
    • /
    • 2008
  • LED를 구동하기 위하여 여러 가지 주변회로를 하나의 IC로 통합한 Driver IC는 최근 LED의 효율의 증가와 더불어 다양한 사용처의 발생으로 인하여 그 종류가 다양해졌다. 본 연구에서는 이러한 다양한 Driver IC들의 특성을 평가하기 위한 방법 및 다양한 Application의 적용을 통한 Driver IC의 성능을 평가하였다. Driver IC의 기능성과 내구성을 판단하기 위한 시험들을 진행하였다. 여러 종류의 LED를 사용하여 Driver IC의 성능을 평가하였다. Driver IC에 원하는 동작을 구현하고자 하는 제어회로 부분도 설계하여 다양한 특성들을 분석할 수 있도록 하였다. 3종류의 응용제품을 구현하여 적용의 사례로 검토하였고 각각의 응용제품의 경우 필요한 기능들에 대한 분석도 실시하였다. 전체적으로 반도체 IC 시험규격에 의한 신뢰성 시험도 일부 실시를 하여 신뢰성에 대한 부분도 평가를 진행하였다. 이를 통하여 Driver IC의 필요요소에 대한 부분들을 결정하였다.

  • PDF

A Study on 16-Channel LED Driver IC for Full-Color LED Display (풀 컬러 LED 디스플레이용 16-채널 LED 드라이버 IC에 관한 연구)

  • Kim, Sang-Kyu;Lee, Ji-Hoon;Jung, Won-Jae;Jung, Hyo-Bin;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1275-1282
    • /
    • 2012
  • This paper proposes the 16-channel LED Driver IC for Full color LED display system. The proposed LED driver IC in this paper can draw current independent of temperature and supply voltage in each channel. Current flow in the channel is configurable via an external resistor. LED brightness is adjusted by 12-Bit PWM(Pulse Width Modulation) and 8-Bit DC(Dot Correction). A real-time monitoring of IC temperature ($130^{\circ}C/150^{\circ}C$) and LED status (open/short) is provided by LED driver IC and the user can receive warning and get information on problems. A 16-channel LED driver IC is produced using 0.35 um BCD process and the size is $2.5mm{\times}2.5mm$. In this paper, channel current characteristic and channel current control function were measured in order to verify am embodied 16-channel LED driver IC by producing a single IC test board.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Song, Ki-Nam;Han, Seok-Bung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

LED driver IC design for BLU with current compensation and protection function (전류보상 및 보호 기능을 갖는 BLU용 LED Driver IC설계)

  • Lee, Seung-Woo;Lee, Jung-Gi;Kim, Sun-Yeob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.1-7
    • /
    • 2020
  • In recent years, as LED display systems are actively spread, study on effective control methods for an LED driver for driving the systems has been in progress. The most representative among them is the uniform brightness control method for the LED driver channel. In this paper, we propose an LED driver IC for BLU with current compensation and system protection functions to minimize channel luminance deviation. It is designed for current accuracy within ±3% between channels and a channel current of 150 mA. In order to satisfy the design specifications, the channel amplifier offset was canceled out by a chopping operation using a channel-driving PWM signal. Also, a pre-charge function was implemented to minimize the fast operation speed and luminance deviation between channels. LED error (open, short), switch TR short detection, and operating temperature protection circuits were designed to protect the IC and BLU systems. The proposed IC was fabricated using a Magnachip 0.35-um CMOS process and verified using Cadence and Synopsys' Design Tool. The fabricated LED driver IC has current accuracy within ±1.5% between channels and 150-mA channel output characteristics. The error detection circuits were verified by a test board.

Design of an Active Current Regulator for LED Driver IC (LED 구동 IC를 위한 능동 전류 조절기의 설계)

  • Yun, Seong-Jin;Oh, Tak-Jun;Jo, A-Ra;Ki, Seok-Lip;Hwang, In-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.612-616
    • /
    • 2012
  • This paper presents an active current regulator for LED driver IC. The proposed driver circuit is consists of DC-DC converter for supplying constant DC voltage to LED, active current regulator for compensating channel-to-channel current error from LED strings and feedback circuit for controlling duty ratio of the converter. The proposed active current regulator senses current of LED channels by equalizing both $V_{DS}$ and $V_{GS}$ at LED current control transistor. Because the proposed circuit directly measures the LED channel current without a sensing resistor and regulates all channel with same regulation loop, the power consumption and the current error are much small compared with previous works. The measured maximum efficiency of overall LED driver IC is approximately 94% and current error of LED channel-to-channel is under ${\pm}1.3%$. The proposed LED driver IC is fabricated Dongbu 0.35um BCD process.

A Study on the Modeling and Simulation of LED Driver Using HV9910 IC (HV9910 IC를 사용한 LED driver 모델링 및 시뮬레이션에 관한 연구)

  • Han, Soo-Bin;Park, Suck-In;Jeong, Hak-Geun;Chae, Su-Yong;Song, Eu-Gine;Jung, Bong-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.14-21
    • /
    • 2012
  • This paper study a method of modeling and simulation of LED driver circuit for a design optimization. Simplified LED modeling is introduced and a driver IC, HV9910, is modeled by implementing the major function blocks. Circuit of buck type converter is constructed for simulation. Simulation includes not only the internal function of IC but also the various performance results such as LED array current control and dimming. Experiment results are also shown to prove the verification of its usage. This results show that the simulation approach is valid for a circuit optimization and a reduction of development time.

Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function (출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계)

  • Han, Seok-Bung;Song, Ki-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

A White-LED Driver IC for Mobile Applications (모바일용 White-LED Driver IC)

  • Ko, Young-Seok;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.39-40
    • /
    • 2009
  • This paper presents a white-LED driver IC for a mobile application. It uses a high efficiency current mode boost converter method for a low voltage application. For a LED drive, it provides a PWM(Pulse Width Modulation) and analog dimming function. The device was designed and fabricated using 0.35um BCD process. The evaluated waveforms for an implemented IC show promising results.

  • PDF

A study on AC-powered LED driver IC (교류 구동 LED 드라이버 IC에 관한 연구)

  • Jeon, Eui-Seok;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.275-283
    • /
    • 2021
  • In this study, a driver IC for an AC-powered LED that can be manufactured with a low voltage semiconductor process is designed and the performances of the driver IC were simulated. In order to manufacture a driver IC that operates directly at AC 220V, a semiconductor manufacturing process that satisfies a breakdown voltage of 500V or higher is required. A semiconductor manufacturing process for a high-voltage device requires a much higher manufacturing cost than a general semiconductor process for a low-voltage device. Therefore, the LED driver IC is designed in series so that it can be manufactured with semiconductor process technology that implements a low-voltage device. This makes it possible to divide and apply the voltage to each LED block even if the input voltage is high. The LED lighting circuit shows a power factor of 96% at 220V. In the pnp transistor circuit, a very high power factor of 99.7% can be obtained, and it shows a very stable operation regardless of the fluctuation of the input voltage.

Driver IC Modeling Technique for LED Driver Simulation (LED 드라이버 시뮬레이션을 위한 드라이버 IC 모델링 기법)

  • Yun, Jae-Yi;Choi, Bum-Ho;Yu, Yun-Seop
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.222-223
    • /
    • 2010
  • TOP245P driver IC modeling technique are proposed for the LED Driver design. Analog behavioral model of TOP245P IC including the shunt regulator, under-voltage(UV) detection, over-voltage(OV) shut-down and SR flip-flop is developed by using PSPICE. The averaged-model and switching-model is applied to the LED driver simulation. The simulation results by the proposed TOP245P IC modeling technique are in good agreement with that in the data sheet and an experiment data.

  • PDF