• Title/Summary/Keyword: LED curing light

Search Result 80, Processing Time 0.026 seconds

A STUDY OF MONOMER RELEASE FROM PIT AND FISSURE SEALANTS ACCORDING TO VARIOUS LIGHT SOURCES (광원에 따른 수종의 치면열구전색제로부터 용리되는 모노머에 관한 연구)

  • Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.284-292
    • /
    • 2005
  • The aim of this study was to identify and quantify the major or detectable monomers released from any of five commercially-available, light-cured pit and fissure sealants with three different light sources : conventional halogen light curing unit, plasma arc light curing unit and LED curing unit. After curing, specimens were immediately immersed in distilled water for different time intervals. The time related release of monomers were analyzed by high performance liquid chromatography(HPLC). Identification and quantitative analysis of monomers were performed by the comparison of the elution time and the absorption peak height of the eluates with those of the authentic sample. The result of this study can be summarized as follows. 1. Standard solution peaks with retention times of 2.3, 3.2, 5.6, 6.5, 10.4 minutes were identified as BPA, TEGDMA, UDMA, Bis-GMA, Bis-DMA, respectively. 2. None of the chromatograms of the tested sealants displayed peaks with the same retention time as that of the standard solution, except for TEGDMA. 3. The highest release rate of TEGDMA was observed during the 12hr period for all samples and declined thereafter. 4. The elution of TEGDMA from curing with Halogen curing unit for 20 second and LED for 10 second was less than that resulting from curing with Plasma arc for 3 second. 5. TEGDMA was detected at much lower levels in eluates from the Pit & Fissure $Sealant^{TM}$ than other sealants. The elution of TEGDMA from the $Helioseal^{(R)}$ F cured with Halogen light curing unit, the $Concise^{TM}$ cured with Plasma arc curing unit and the $Teethmate^{(R)}$ F-1 cured with LED curing unit were higher than other sealants.

  • PDF

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

IN VITRO PULP CHAMBER TEMPERATURE CHANGE DURING COMPOSITE RESIN CURING WITH VARIOUS LIGHT SOURCES (복합레진 중합 광원에 따른 치수강 온도 변화에 대한 생체외 연구)

  • Lee, Ji-Young;Kim, Dae-Eop;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.85-91
    • /
    • 2004
  • The purpose of this study was to observe in vitro pulp chamber temperature rise during composite resin polymerization with various light-curing sources. The kinds of light-curing sources were plasma arc light(P), low heat plasma arc light, traditional low intensity halogen light, low intensity LED(L-LED), and high intensity LED(H-LED). Temperature at the tip of light guide was measured by a digital thermometer using K-type thermocouple. Occlusal cavities$(2{\times}2{\times}1.5mm)$ were so prepared in extracted human premolars as to the remaining dentin thickness was 1mm. Dentin adhesive was applied to all cavities. Experimental groups consisted of no base group, ionomer glass base group, and calcium hydroxide base group. Temperature before and after resin filling was measured. Temperature at the light guide tip was the highest with P and the lowest L-LED. Temperature before resin filling was the highest with H-LED and the lowest with L-LED. Temperature after resin filling was the highest with H-LED and the lowest with L-P and with L-LED. The lining of base partially reduced the temperature rise.

  • PDF

Evaluation of High-power Light Emitting Diode Curing Light on Sealant Polymerization (고출력 발광 다이오드 광중합기의 치면열구전색제 중합능 평가)

  • Park, Youngjun;Lee, Jewoo;Ra, Jiyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • This study aimed to determine whether the curing times of Xtra Power and High Power modes of high-power light emitting diode (LED) curing light are sufficient for polymerization of resin sealants. The specimens were prepared and their microhardness values were measured and compared with those of specimens polymerized under conventional LED curing light. The filled sealant polymerized for 8 seconds in the High Power mode and for 3 seconds in the Xtra Power mode showed significantly lower microhardness than the control specimen (p = 0.000). The unfilled sealant polymerized for 8, 12 seconds in the High Power mode and for 6 seconds in the Xtra Power mode showed significantly lower microhardness than the control specimen (p = 0.000). The results of this study suggest that the short curing time with the Xtra Power and High Power modes of highpower LED curing light are not sufficient for adequate polymerization of sealants under specific conditions, taking into account the curing times and the type of sealant.

Effects of 3 different light-curing units on the physico-mechanical properties of bleach-shade resin composites

  • Azin Farzad;Shahin Kasraei;Sahebeh Haghi;Mahboubeh Masoumbeigi;Hassan Torabzadeh;Narges Panahandeh
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.9.1-9.11
    • /
    • 2022
  • Objectives: This study investigated the microhardness, flexural strength, and color stability of bleach-shade resin composites cured with 3 different light-curing units. Materials and Methods: In this in vitro experimental study, 270 samples were fabricated of bleach and A2 shades of 3 commercial resin composites (Point 4, G-aenial Anterior, and Estelite Sigma Quick). Samples (n = 5 for each trial) were cured with Bluephase N, Woodpecker LED.D, and Optilux 501 units and underwent Vickers microhardness and flexural strength tests. The samples were tested after 24 hours of storage in distilled water. Color was assessed using a spectrophotometer immediately after preparation and 24 hours after curing. Data were analyzed using 3-way analysis of variance and the Tukey test (p ≤ 0.001). Results: Samples cured with Optilux exhibited the highest and those cured with LED.D exhibited the lowest microhardness (p = 0.023). The bleach shade of Point 4 composite cured with Optilux displayed the highest flexural strength, while the same composite and shade cured with Sigma Quick exhibited the lowest (p ≤ 0.001). The color change after 24 hours was greatest for the bleach shade of G-aenial cured with Bluephase N and least for the A2 shade of Sigma Quick cured with Optilux (p ≤ 0.001). Conclusions: Light curing with polywave light-emitting diode (LED) yielded results between or statistically similar to those of quartz-tungsten-halogen and monowave LED in the microhardness and flexural strength of both A2 and bleach shades of resin composites. However, the brands of light-curing devices showed significant differences in color stability.

Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units (Halogen Light Curing Unit과 Light Emitting Diodes Curing Unit을 이용하여 중합되어진 복합레진의 마멸 특성 비교)

  • Lee Kwon-Yong;Kim Hwan;Park Sung-Ho;Jung Il-Young;Jeon Seung-Beom
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.268-271
    • /
    • 2005
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15N contact force in a reciprocal sliding motion of sliding distance of 10mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

Dentin bond strength of bonding agents cured with Light Emitting Diode (LIGHT EMITTING DIODE로 광조사한 상아질 접착제의 상아질 전단접착강도와 중합률에 관한 연구)

  • Kim Sun-Young;Lee In-Bog;Cho Byeong-Hoon;Son Ho-Hyun;Kim Mi-Ja;Seok Chang-In;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.504-514
    • /
    • 2004
  • This study compared the dentin shear bond strengths of currently used dentin bonding agents that were irradiated with an LED (Elipar FreeLight, 3M-ESPE) and a halogen light (VIP, BISCO). The optical characteristics of two light curing units were evaluated. Extracted human third molars were prepared to expose the occlusal dentin and the bonding procedures were performed under the irradiation with each light curing unit. The dentin bonding agents used in this study were Scotchbond Multipurpose (3M ESPE), Single Bond (3M ESPE), One-Step (Bisco), Clearfil SE bond (Kuraray), and Adper Prompt (3M ESPE), The shear test was performed by employing the design of a chisel-on-iris supported with a Teflon wall. The fractured dentin surface was observed with SEM to determine the failure mode. The spectral appearance of the LED light curing unit was different from that of the halogen light curing unit in terms of maximum peak and distribution. The LED LCU (maximum peak in 465 nm) shows a narrower spectral distribution than the halogen LCU (maximum peak in 487 nm). With the exception of the Clearfil SE bond (P < 0.05), each 4 dentin bonding agents showed no significant difference between the halogen light-cured group and the LED light-cured group in the mean shear bond strength (P > 0.05). The results can be explained by the strong correlation between the absorption spectrum of camphoroquinone and the narrow emission spectrum of LED.

Effect of light source on depth of cure and polymerization shrinkage of composites

  • Na, Joon-Sok;Oh, Won-Mann;Hwang, In-Nam
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.578.1-578
    • /
    • 2001
  • The aim of this study was to evaluate the efficiency of the recently introduced light curing units to polymerize a light curing resin composite. Four light curing units XL 3000, Optilux 500 for halogen light source, Apollo 95E for plasma arc and Easy cure for LED (blue-light Emitting Diode) were evaluated. Radiometer was used for measure the light intensity.(omitted)

  • PDF

EFFECT OF STEP CURING ON THE CONTRACTION STRESS AND MARGINAL ADAPTATION OF RESIN RESTORATION (단계별 광중합 방식이 복합레진 수복물의 수축 응력과 변연 접합도에 미치는 영향)

  • Park, Jong-Whi;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.221-232
    • /
    • 2006
  • The purpose of this study was to investigate the effect of step-curing mode on polymerization shrinkage and contraction of composite resin restoration. Class I cavities were prepared on the extracted human premolars. The cavities were ailed with Filtek $Z-250^{TM}$ (hybrid resin, 3M ESPE, USA) and Filtek $flow^{TM}$ (flowable resin, 3M ESPE, USA) and cured with one of the following irradiation modes; Halogen 40sec with continuous curing, LED 10sec with continuous curing, and LED 13sec with step-curing. Contraction stress was measured with strain gauge which was connected to TML $Datalogger^{TM}$ (TDS-102, SOKKI, Japan) and resin-dentin interfaces were observed by scanning electron microscope. The results of present study can be summarized as follows : 1. Composite resin restoration showed transient expansion just after irradiation of curing light. Contraction stress was increased rapidly at the early phase of polymerization and reduced slowly as time elapsed (P<0.05) 2. $Filtek\;flow^{TM}$ showed lower contraction stress than Filtek $Z-250^{TM}$ regardless of curing modes. 3. LED step-curing mode showed lowest contraction stress in Filtek $Z-250^{TM}$ compared with other curing modes(P<0.05). 4. LED step-curing mode showed lowest contraction stress in $Filtek\;flow^{TM}$ compared with other curing modes(P<0.05), but difference in contraction stress was not so greate as in $Filtek\;Z-250^{TM}$. 5. Polymerization of composite resin by LED light with step-curing mode and halogen light with continuous ode resulted in better marginal sealing than LED light with continuous mode.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.