• Title/Summary/Keyword: LED color

Search Result 746, Processing Time 0.02 seconds

Improvement of color mixing in an RGB lamp using tilled lenses (경사렌즈를 사용한 RGB LED전구 색혼합 향상)

  • 강석훈;임성무;송상빈;여인선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • This paper presents a method of improvement of color mixing in an RGB LED white lamp. The deviation from white light after RGB color mixing results mainly from the difference in the ray direction among LEDs. The authors propose a method using tilted lenses covered over each LED to deflect the overall direction of the ray generated from far-sited LEDs toward the center axis of the lamp. The degree of improvement is evaulated using a color discrimination method based on McAdam ellipse.

A Study on Digital Sound Source based LED Color Matching Algorism using Moving Average Filter (이동평균 필터방식을 이용한 디지털음원 기반 LED컬러 매칭 알고리즘에 관한 연구)

  • Lee, Seonhee;Lee, Junghoon;Cho, Juphil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.69-72
    • /
    • 2014
  • Recently, lighting systems using audio signal of audible frequency and frequency spectrum of visible lighting are studied. And various related products are being sold and released commercially. Also demands of emotional matching algorithm and system which includes effective and methodical designs are being increased. And the importance related with this scheme has increased. In this Paper, we configures a system for digital sound source based LED color control. And we develop algorithm to control LED color for the system configuration. Also we demonstrated the usefulness of the algorithm through experiment with simulation using LED color control system. We expected to be useful in a variety of fields and applications using proposed digital music based LED color control system.

ASIC Design Controlling Brightness Compensation for Full Color LED Vision

  • Lee Jong Ha;Choi Kyu Hoon;Hwang Sang Moon
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.836-841
    • /
    • 2004
  • This paper describes ASIC design for brightness revision control, A LED Pixel Matrix (LPM) design and LPM in natural color LED vision. A designed chip has 256 levels of gradation correspond to each Red, Green, Blue LED pixel respectively, which have received 8bit image data. In order to maintain color uniformity by reducing the original rank error of LED, we adjusted the specific character value 'a' and brightness revision value 'b' to pixel unit, module unit and LED vision respectively by brightness characteristic function with 'Y=aX+b'. In this paper, if designed custom chip and brightness revision control method are applied to manufacturing of natural color LED vision, we can obtain good quality of image. Furthermore, it may decrease the cost for manufacturing LED vision or installing the plants.

  • PDF

Study of a LED Driver for Extension of Color Gamut (색 영역의 확장을 위한 LED 구동회로에 대한 연구)

  • Shin, Dong-Seok;Park, Chan-Soo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.760-769
    • /
    • 2016
  • This paper proposes a hybrid LED driving circuit and its control method for extension of the color gamut of LED. The proposed hybrid LED driving circuit provides the constant current by switching regulation in the high current and by linear regulation in the low current through LED. Furthermore, the magnitudes of the high current and low current were controlled by CC(Continuous Current) control method and PWM(Pulse Width Modulation) control method, respectively. We experimentally confirmed that the current through RGB LED is linearly controlled to 2% maximum current ratio by varying PWM in the proposed driving circuit and control method. As a result of the measurement of the output light color in CIE1976 chromaticity coordinates, we confirmed that the color, which not be expressed by the existing method, uniformly expressed. We confirmed that the color, which can not be expressed by the existing method, was uniformly output and verified that the color gamut was expanded by the low current controlled by the proposed driving circuit and control method.

An LED Lighting with Varying Color Temperature for Emotional Lighting Systems (감성조명 시스템을 위한 색온도 조정 가능한 LED 조명)

  • Liu, Jia;Kim, Hoon;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.522-523
    • /
    • 2008
  • This paper presents an LED lighting which can control its color temperature. It consists of a power factor correction (PFC) circuit, an LED driver, and an LED color control circuit. The proposed system can adjusts the light intensity to obtain a desired color with independently changeable illuminance. The power factor of the PFC circuit is 98%. The LED driver has 90% efficiency at 300mA output current. The output power of the experimented LED lighting is 150 W. The achieved color temperature range was from 3000K to 7500K, and the illumination one was from 500 lux to 1500 lux.

  • PDF

Designing User Participation Smart Photonic Clothing Prototype Using Arduino (아두이노를 활용한 사용자 참여형 스마트 포토닉 의류 프로토타입 설계)

  • An, Mi-hwa;Lim, Ho-sun
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Smart photonic clothing integrates light emitting technology inside and outside of the garment and integrates it as a fashion product. It expresses digital color that radiates light outside the body that expands the functionality of the clothing as well as makes new and various attempts visually. It is also is gradually expanding into a new area of fashion. LED, one of the digital color output devices, is a light emitting device that is suitable for presenting consumer customized designs in that the patterns and colors of clothes can be modified as desired by utilizing computer technology such as program coding. LED technology that can realize various digital colors is actively applied in various industrial design fields, but there are few previous studies on smart clothes using LED color in Korean fashion fields. Therefore, this study develops a prototype of a customized LED smart photonic garment that allows the user to directly participate in the color implementation of clothing and select a digital color suitable for the desired function. The LED module was designed to be detachable from clothing and made using a 256-pixel LED matrix. Various coding patterns of the LED were designed using the coding change of Arduino program.

Color Quality Evaluation of High Color Rendering White LEDs According to Phosphor Types and Composition Ratio (형광체 종류와 조성비에 따른 고연색 백색 LED의 색품질 평가)

  • Jeong, Hee Suk;Ryeom, Jeongduk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.463-468
    • /
    • 2017
  • Eight types of LED packages were manufactured according to the type and composition ratio of phosphors by using commercially available white LED phosphors. CRI (Ra), a conventional color quality evaluation method was evaluated by using manufactured white LED; the Rf, Rg, color vector graphic, and color distortion graphic were evaluated with a new method, IES TM-30-15. The results of the evaluation confirmed that the new method compensated for the disadvantages of CRI, which was found to be inadequate when the color was saturated. The added evaluation index identified the chroma variation and color change. Furthermore, the study showed that the changes of Rf and Rg are small when controlling phosphors based on CRI, questioningthe necessity of identifyingchroma variation and color change.

A Color Temperature and Illuminance Controllable LED Lighting System (색온도와 조도 제어가능한 LED 조명 시스템)

  • Kim, Hoon;Youm, Jea-Kyoung;Chung, Won-Sup;Kim, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.10-22
    • /
    • 2009
  • This paper presents an LED lighting system with an LED color control algorithm that can independently change its color temperature and illuminance. To show the validity of the proposed algorithm, it is proven that its solution always exists. The proposed algorithm was applied to the control of an LED module that is composed of red, green, blue, and white (RGBW) LEDs. Its color temperature variation ranged from 3,500~7,500[$^{\circ}K$], and its illuminance ranges from 500~1,500[lux]. Within these range, the color temperature and illuminance deviations are as low as $\pm0.8$[%] when the junction temperature of LEDs are maintained at 40[$^{\circ}C$]. In the range of 30~70[$^{\circ}C$], the measured illuminance and color temperature deviations are as low as 2.1[%] and 3.6[%], and the compensated ones are as low as 1[%] and 0.49[%], when the desired illuminance and color temperature are 1,000[lux] and 6,500[$^{\circ}K$], respectively.nyang.ac.kr).

Design and Implementation of an LED Mood Lighting System Using Personalized Color Sequence Generation

  • Jeong, Gu-Min;Yeo, Jong-Yun;Won, Dong Mook;Bae, Sung-Han;Park, Kyung-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3182-3196
    • /
    • 2012
  • In this paper, we present a new LED (Light Emitting Diode) mood lighting system interacting with smartphones based on the generation of different light sequences. In the proposed system, one light sequence is considered to be one unit of the service contents, which is then transmitted through a network and played in an LED lighting system. To this end, we propose a novel generation scheme using a smartphone, and a decoding/playing mechanism in an LED lighting system. The lighting sequences have a fixed period divided into predefined time units. Two modes - basic and interpolation - are supported in each time unit when playing a color sequence. In the basic mode, the color is maintained for the entire time unit, whereas in the interpolation mode the color is interpolated. The sequence is decoded and played in the lighting circuit by changing the duty cycle of a PWM (Pulse Width Modulation) signal. A demonstration system of the overall proposed method was using smartphones, a server and an LED lighting system. The results from this experiment show the validity and applicability of the proposed scheme.

The Color Temperature Flexibility-typed LED Lighting Control System (색온도 가변형 LED 조명제어시스템)

  • Kim, Hye-Myeong;Yang, Woo-Seok;Cho, Young-Seek;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.284-288
    • /
    • 2015
  • The color temperature flexibility-typed Lighting Emitting Diode(LED) lighting control system proposed in this thesis employs Pulse Width Modulation(PWM) technique to control the brightness of LED lighting. The LED lighting used as a light source has 20W downlight composed of two types of LED chips: one is Warm White and the other is Cool white. One multi-sensor module consisting an infrared sensor, an illumination sensor, and a temperature sensor was made, to which Bluetooth wireless communication technique was applied to enable a smartphone application to control lighting brightness and identify the information collected from the sensor. CS-1000, a spectroradiometer, was used to measure LED dimming control and the changing values of a color temperature in eight steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5600K of Cool White LED.