• Title/Summary/Keyword: LED Panel

Search Result 179, Processing Time 0.032 seconds

Process window of simultaneous transfer and bonding materials using laser-assisted bonding for mini- and micro-LED display panel packaging

  • Yong-Sung Eom;Gwang-Mun Choi;Ki-Seok Jang;Jiho Joo;Chan-mi Lee;Jin-Hyuk Oh;Seok-Hwan Moon;Kwang-Seong Choi
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.347-359
    • /
    • 2024
  • A simultaneous transfer and bonding (SITRAB) process using areal laser irradiation is introduced for high-yield and cost-effective production of mini- or micro-light-emitting diode (LED) display panels. SITRAB materials are special epoxy-based solvent-free pastes. Three types of pot life are studied to obtain a convenient SITRAB process: Room temperature pot life (RPL), stage pot life (SPL), and laser pot life (LPL). In this study, the RPL was found to be 1.2 times the starting viscosity at 25℃, and the SPL was defined as the time the solder can be wetted by the SITRAB paste at given stage temperatures of 80℃, 90℃, and 100℃. The LPL, on the other hand, was referred to as the number of areal laser irradiations for the tiling process for red, green, and blue LEDs at the given stage temperatures. The process windows of SPL and LPL were identified based on their critical time and conversion requirements for good solder wetting. The measured RPL and SPL at the stage temperature of 80℃ were 6 days and 8 h, respectively, and the LPL was more than six at these stage temperatures.

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement (잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정)

  • Kang, Ji-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.

The Next Wave in Display Innovation

  • Webster, Steven C.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.4-4
    • /
    • 2008
  • The progress in flat panel displays over the last two decades has been astonishing. In just 20 years, the LCD-TV grew up from a 2-inch curiosity, to an industry that will sell about 120 million flat panel TV's this year, with viewing area up to 4000 times larger. That success is based on continuous innovation, especially in manufacturing processes. For the next decade to bring another doubling of the business, progress will need to continue in four major areas: Human factors, ecological impact, visual quality, and of course continued drive towards affordability. This talk will detail the technology advances that can allow this industry to meet those challenges. Human factors. Today, we adapt our lifestyle to our technology. People organize their offices, and their homes, around displays. We pass around mobile phones to share images, rather than experiencing them as a group. Billions of newspapers continue to be sold daily. Advances in flexible displays can lead to large portable displays. "New era projection" includes the handheld Pico Projectors that are already on the market, and will ultimately appear integrated in mobile phones the same way cameras do today. "Eco" impact. Today TV's are one of the top energy consumers in a U.S. home, and the fastest growing. Watching a large flat panel TV can cost twice as much as running a large refrigerator. With today's concern about energy consumption, regulations are starting to emerge worldwide to limit TV electrical use. Fortunately, good solutions exist in using light management films to eliminate bulbs, saving power without increasing cost. Going forward, LED backlights will drive another step downward. OLED displays might be the ultimate solution. Visual quality. The color of an LCD-TV is still often considered inferior to a far less expensive CRT. And almost all displays suffer from representing a three-dimensional world on a two dimensional surface. The technology to improve color is available today, and will likely move from premium sets into the mainstream as costs come down. 3D is now arriving in movie theaters worldwide, and that will drive up the demand for similar realistic images in home theaters. And the technology is emerging today for 3D representation to move beyond specialized applications into everyday use, on screens large and small. Affordability. The world takes cost-down miracles for granted in consumer electronics. Each of these other advances will be balanced with a drive for affordability, especially as the market grows in emerging countries. The other three challenges must be met without increasing cost. Putting this all together, the next few years will emphasize "eco friendly" designs, and enhanced images such as 3D. By 2013 we will start to see serious penetration by emissive technologies (OLED, high efficiency plasma, or other), with the "ultimate display" likely not in the market for a decade. Lots of opportunities for innovation remain ahead of us.

  • PDF

Analysis of Factors for Heating Period Changes among Greenhouse Grape Farms (시설포도 농가의 가온시기 변화에 미치는 요인 분석)

  • Choi, Don-Woo;Lim, Cheong-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.209-214
    • /
    • 2017
  • The purpose of this study is to identify the factors that led greenhouse grape farms to delay their heating periods after the coming into force of the Korea-Chile Free Trade Agreement (FTA). Panel data on the cropping (system) changes from 2004 through 2016 were used for the analysis. According to the panel logistic model, the estimated coefficient of the cultivation area was 0.0002, which was statistically significant at the 10% significance level, the estimated coefficient of grape imports was 1.4258, which was statistically significant at the 1% significance level, and the estimated coefficient of the regional dummy was 0.808, which was statistically significant at the 5% significance level. The results indicated that the use of wider cultivation areas, increase in grape imports, and colder climate(in the mid-northern part of Korea) increased the likelihood of delayed heating. The Korean government is offering direct payment programs and business closure support to the greenhouse grape farmers. While these actions can relieve the damage caused by the increase in grape imports, they will not provide the ultimate solution. Various support measures are needed, such as renewing the varieties to meet the changing demand of grape consumers, providing agricultural materials to reduce the heating expenses, and modernizing greenhouse facilities to improve the energy efficiency and reduce the costs.

A study on the Large Area Rapid-Injection Compression Molding for Mold Optimum Design (대면적 쾌속 사출압축성형을 위한 금형설계 최적화)

  • Kim, T.H.;Kim, J.Y.;Kim, J.S.;Kang, J.J.;Kim, J.S.;Roh, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.99-102
    • /
    • 2009
  • The recent LCD TV market has made efforts to produce thinner, brighter, and clearer products, and experienced the rapid light source replacement from a line source of light CCFL to a point source of light LED. In particular, LGP(Light Guiding Panel) among key parts composing BLU(Back Light Unit) has limits of the injection molding technology as well as the mold design, its processing and manufacturing technology so that it is hard to produce large LGP over 40 inch. To produce large light-guide panels over 40 inch under the injection molding process, a mold 3D model was developed in the design process before manufacturing a mold and structure unification was processed through CAE analysis. As a result, it was possible to construct the mold design process, and it is expected to manufacture the optimized mold by applying the mold design and manufacturing process of large-scale rapid injection-compression molding that will be produced in the future.

  • PDF

Do Firm and Bank Level Characteristics Matter for Lending to Firms during the Financial Crisis?

  • Lee, Mihye
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.5
    • /
    • pp.37-46
    • /
    • 2018
  • Purpose - This paper explores the determinants of bank lending to firms during and after the global financial crisis using firm- and bank-level data to answer the questions what caused the contraction of lending to firms despite the loosening monetary policy during this crisis period. Research design, data, and methodology - We investigate the effects of the monetary policy that followed the global financial crisis on firms borrowing. We use a dynamic panel model to address how firms lending respond to monetary policy. The data are obtained from CRETOP and we consider the manufacturing sector for the analysis to control for unobserved heterogeneity such as industry-specific shocks. Results - The findings from the empirical analysis suggest that both bank- and firm-level characteristics are significant determinants of bank lending. Especially, we find that corporate risk, measured by default risk, is one of the key factors that led to a decline in lending during the crisis. Conclusions - This paper shows that companies borrow more from liquid banks, and high bank capital can also contribute to an increase in a firm's borrowing from banks. Especially, the results confirm that the default rate measured at the firm level has increased during and after the global financial crisis, which implies that default risk interplays with other firm and bank-level characteristics.

Changes in Wage Differentials among College Graduates in South Korea, 1999-2008 (1999~2008년 한국에서 대졸자 간 임금격차의 변화)

  • Ko, Eunmi
    • Journal of Labour Economics
    • /
    • v.34 no.1
    • /
    • pp.103-138
    • /
    • 2011
  • This paper examines the changes in relative wage of top 10 college graduates to the other college graduates among the age group of 26-28 years using Korean Labor and Income Panel Study (KLIPS). From 1999 to 2008, the wage differential between top 10 college graduates and the other college graduates increased in South Korea. This wage differential seems to persist along with their age. Within industry wage differential among college graduates also rose but in the late 2000s it became smaller than the wage differential within firm size and industry. Increase in elite college wage premium has led to recent changes in college wage premium.

  • PDF

Determination of photo- and electroluminescence quantum efficiency of semiconducting polymers (전기발광고분자의 양자효율 측정)

  • 이광희;박성흠;김진영;진영읍;서홍석
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2002
  • In a recent effort to develop polymer light-emitting diodes (LEDs) as promising flat panel display components, measurements of reliable absolute photoluminescence (PL) and electroluminescence (EL) efficiency for polymer materials are required. In this work, we performed the measurement of PL and EL efficiency of luminescent polymers using an integrating sphere technique. The external PL efficiency of MEH-PPV was estimated to be 8 ($\pm$2)% together with the value of 0.02 1m/W for the external EL efficiency. This PL efficiency is in good agreement with published values, indicating that our PL efficiency measurements are somewhat legitimate. We believe this study might contribute to the research and development of organic materials for optoelectronic devices.

Light Emitting Characteristics of Multi-layer OLEO Fabricated with DCM (DCM 계열을 이용한 OLED의 전기적인 발광 특성에 관한 연구)

  • Chun, Min-Ho;Yun, Suk-Won;Lim, Sung-Tack;Shin, Dong-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.57-60
    • /
    • 2002
  • In generally, the guest-emitter doped system has been reported to give a bright electroluminescence(EL). The purpose of using doped system is to improve for increasing lifetime and efficiency, and tuning multicolor light. This indicates an enhanced electron-hole recombination rate in emitting layer. The purpose of this study is to obtain the high performance EL devices for flat panel display with red emission. We fabricated EL devices using the guest-host system. where DCM derivatives were taken as a dopant. The devices are fabricated in multilayer system with various concentration of the dopant (red light emitting dye). We measured the I-V characteristics and EL spectra from these devices. and we compared with photoluminescence(PL) quantum yield among the DCM derivatives. The emission mechanism of devices is participated in energy transfer. The energy transfer from these hosts to DCM generates luminescence spectra that vary from yellow red to red, depending on DCM derivatives. Absorption and emission spectra of organic materials composing the devices depend on the emission materials doped with the DCM derivatives. We demonstrated that the high EL efficiency can be achieved by doping host material with DCM derivatives and molecular steric structures

  • PDF