• Title/Summary/Keyword: LED Lights

Search Result 295, Processing Time 0.03 seconds

Optimization of the Optical System for an Aircraft Warning Light Using a Fresnel Lens (프레넬 렌즈를 이용한 항공장애등 광학계 최적 설계)

  • Kim, Jong-Tae;Park, Hyeon-Jun
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.15-21
    • /
    • 2021
  • In this paper, an aircraft warning light's optical system was designed using an LED light-source module and a collimating Fresnel lens. As for the optical system, a collimator Fresnel lens was designed for each module to satisfy a vertical-elevation center luminous intensity of 20,000 cd and the divergence-angle luminous-intensity standard conditions of the Ministry of Land for Infrastructure and Transport for aircraft warning lights. In addition, the optical system was optimized by adjusting the position and tilt of the LED light-source module and Fresnel lens. By analyzing and comparing the light-distribution characteristics of the optical system, an aircraft-warning-light optical system with optimal performance was obtained.

Study on the Development of LED streetlight control system using GPS satellite communication and Arduino (GPS 위성통신과 아두이노를 이용한 에너지 절약형 LED 가로등 제어 시스템 개발에 관한 연구)

  • Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.632-637
    • /
    • 2016
  • A streetlight control system was developed using information technology and LED lights for efficient management and energy savings. The proposed system can control the power usage of an LED streetlight luminaire using GPS satellite communication and an Arduino with a built-in microprocessor. A control circuit was designed to control the current using GPS, a control unit, transistor, resistor, and constant-current supply circuit. The circuit was validated through experiments with normal operation. Using GPS, the control system extracts accurate time and location information according to the season, and it controls the current supplied to the LED streetlight according to the extracted time. Power consumption was reduced by more than 11%. The control system could reduce accidents caused by conventional lighting systems used to save energy, and it could improve the inefficient management of energy by preserving constant brightness of a streetlight at times and in areas that have less traffic.

A New LED Light Device Lighting Control Algorithm for Optimal Energy Saving (최적의 에너지 효율을 위한 새로운 LED 조명기기 점등제어 알고리즘)

  • In, Chi-Goog;Hong, Sung-Il;Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • In this paper, we were proposed a new LED light device lighting control algorithm for optimal energy saving. The propose lighting control algorithm be to the LED lights devices lighting control by measuring illuminance into multi sensors. And it be to lighting control by inverting of octagon pattern during set-up time. All the LED is lighting when detecting motion by the motion sensor. And, it was designed enable remote management control by communicate with central monitoring center using Zigbee wireless network to measured data from sensors at real time. In this paper, a proposed lighting control algorithm was measured power consumption about the lighting status of LED lighting device using the lighting control program for demonstrate of energy savings effect. The measured result, the lighting method applying proposed algorithm were proved energy savings effect of more 40% more compared to the existing lighting method.

Design and Optimization of a Biomass Production System Combined with Wind Power Generation and LED on Marine Environment (LED가 결합된 야간풍력발전 활용을 포함한 해상환경 바이오매스 생산시스템의 최적 설계)

  • Hong, Gi Hoon;Cho, Sunghyun;Kang, Hoon;Park, Jeongpil;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.74-82
    • /
    • 2015
  • Carbon dioxide was designated as one of greenhouse gases that cause global warming. Among various ways to solve the $CO_2$ emission issue, the 3rd-generation biomass (algae) production is considered as a viable method to reduce $CO_2$ in the atmosphere. In this research, we propose a design of an innovative sustainable production system by utilizing the 3rd generation biomass in the environment of floating production storage and offloading (FPSO). Existing biomass production systems depend on the solar energy and they cannot continue producing biomass at night. Electricity produced from offshore wind farms also need an efficient way to store the energy through energy storage system (ESS) or deliver it real-time through power grid, both requiring heavy investment of capital. Thus, we design an offshore grid structure harnessing LED lights to supply the necessary light energy, by using the electricity produced from the wind farm, resulting in the maximized production of biomass and efficient use of wind farm energy. The final design integrates the biomass production system enhanced by LED lights with a wind power generation. The suggested NLP model for the optimal design, implemented in GAMS, would be useful for designing improved offshore biomass production systems combined with the wind farm.

Impact of different shades of light-emitting diode on fecal microbiota and gut health in broiler chickens

  • Ianni, Andrea;Bennato, Francesca;Di Gianvittorio, Veronica;Di Domenico, Marco;Martino, Camillo;Colapietro, Martina;Camma, Cesare;Martino, Giuseppe
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1967-1976
    • /
    • 2022
  • Objective: The aim of this study was to characterize the fecal microbiota of broiler chickens reared in the presence of different shades of light-emitting diode (LED) lights, correlating this information with biochemical and molecular evidence that allowed drawing conclusions on the state of health of the animals. Methods: Overall, the metagenomic approach on fecal samples was associated with evaluations on enzymes involved in the cellular response to oxidative stress: glutathione peroxidase (GPX), superoxide dismutase and catalase; while the inflammatory aspect was studied through the dosage of a proinflammatory cytokine, the interleukin 6 (IL-6), and the evaluation of the matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9). Specifically, analysis was performed on distinct groups of chickens respectively raised in the presence of neutral (K = 3,300 to 3,700), cool (K = 5,500 to 6,000), and warm (K = 3,000 to 2,500) LED lightings, and a direct comparison was performed with animals reared with traditional neon lights. Results: The metagenomic analysis highlighted the presence of two most abundant bacterial phyla, the Firmicutes and the Bacteroidetes, with the latter characterized by a greater relative abundance (p<0.05) in the group of animals reared with Neutral LED light. The analysis on the enzymes involved in the antioxidant response showed an effect of the LED light, regardless of the applied shade, of reducing the expression of GPX (p<0.01), although this parameter is not correlated to an effective reduction in the tissue amount of the enzyme. Regarding the inflammatory state, no differences associated with IL-6 and MMP-9 were found; however, is noteworthy the significant reduction of MMP-2 activity in tissue samples obtained from animals subjected to illumination with neutral LED light. Conclusion: This evidence, combined with the metagenomic findings, supports a potential positive effect of neutral LED lighting on animal welfare, although these considerations must be reflected in more targeted biochemical evaluations.

Adaptation of light emitting diode (LED) at culture on attachment plate of diatom (부착조류 파판배양 시 Light Emitting Diodes (LEDs)의 적용)

  • Bae, Jae-Hyun;An, Heui-Chun;Kim, Mi-Gyeong;Park, Jin-Chul;Park, Heum-Gi;Kwon, O-Nam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.542-550
    • /
    • 2014
  • We investigated biomass, diatom species and fucoxanthin contents as cell growth, fatty acid and amino acid contents as nutritional composition of diatoms attached on plate to confirm effects of light emitting diodes (LEDs) due to block off natural light. In the single LED irradiation, biomass showed significantly higher to $30.0{\pm}6.48mg/m^2$ in white LED than that of others (P<0.05). The dominate diatom species was Navicula cancellata. Their lipid contents showed significantly higher to $112.9{\pm}19.23ug/mg$ dry matter (DM) in control than that of others LEDs. But eicosapetaenoic acid (EPA) contents showed significantly higher to $3.3{\pm}0.62ug/mg$ DM than others, but not significantly differed with natural control light treatment (P<0.05). And total protein contents are higher in control and blue LED light than that of others, but essential amino acid contents showed significantly higher to $3.2{\pm}4.8%$ in control (P<0.05). In mixing light with natural and LED light, biomass showed $2.6{\pm}0.22mg/m^2$ in blue LED (P<0.05). Fatty acids contents were not significantly differed with all treatments. Amino acid contents showed to $11.0{\pm}0.33ug/mg$ DM in white LED (P<0.05), but not significantly differed with others LED lights (P>0.05). Therefore, we could suggest that irradiation of blue LED in natural light very benefit to diatom culture for larvae of sea cucumber and abalone and do on.

Effect of tunnel lighting replacement on power usage and illumination improvement: replacing low pressure sodium lamp with LED (터널 조명등 교체에 따른 전력사용량 및 조도 개선 효과: 저압나트륨램프 LED로 교체)

  • Lee, Gyu-Phil;Kim, Jeong-Heum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.185-196
    • /
    • 2020
  • Low-pressure sodium lamps, high-pressure sodium lamps and fluorescent lamps etc are mainly used tunnel lighting in Rep. of Korea. Power rates for tunnel lighting are known to account for the highest percentage in the tunnel maintenance costs. Therefore, tunnel lights are being replaced by LED that have advantages such as low power consumption and longevity. To analysis effect of replacement low pressure sodium lamp with LED, illumination and monthly power usage for a year are investigated for 8 tunnels. Power usage for tunnel lighting is decreased by 26.1% to 59.6%, and illumination is increased by 34.1% to 293% replacing low pressure sodium lamp with LED.

Physicochemical Composition of Buckwheat Microgreens Grown under Different Light Conditions (다른 광조건 하에서 재배된 메밀 새싹채소의 이화학적 특성)

  • Choi, Mi-Kyeong;Chang, Moon-Sik;Eom, Seok-Hyun;Min, Kwan-Sik;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.709-715
    • /
    • 2015
  • As consumers interest in microgreens is increasing worldwide, the production of leafy microgreens uisng different LED lights was investigated in this study. The experiment was carried out to evaluate the effects of different LED lights on the composition and vitamin C contents of buckwheat microgreens. Physicochemical properties of buckwheat microgreens grown under different lights (red, blue, and white) and control exposed to a dark room were investigated. Moisture contents of buckwheat microgreens were 95.65% under white light (WL), 95.75% under blue light (BL), 90.77% under red light (RL), and 89.71% under dark room (DR). Crude ash contents of buckwheat microgreens grown under WL, DR, RL, and BL were 0.39%, 0.39%, 0.31%, and 0.37%, respectively. Crude protein contents of buckwheat microgreens grown under DR, RL, WL, and BL were 7.12%, 7.81%, 1.60%, and 2.40%, respectively. Crude fat contents of buckwheat microgreens grown under DR, BL, RL, and WL were 1.12%, 0.54%, 0.35%, and 0.22%, respectively. $^{\circ}Brix$ was the highest in microgreens grown under BL and RL and the lowest in buds grown under DR. Vitamin C content was the highest in buds grown under WL and the lowest in buds grown under BL. Total chlorophyll content was the highest in microgreens grown under RL and the lowest in buds grown under WL. For mineral content measurement of buckwheat microgreens, Ca, K, Mg, and P contents were high whereas B, Cu, and Zn contents were not detected. The mineral contents of buckwheat microgreens according to each color of light showed significant differences. These results demonstrated that treatment of different colored LED lights during cultivation was able to increase vitamin C content up to affecting the nutritional value of buckwheat microgreens.

Design and Implementation of Smart LED Bicycle Helmet using Arduino (아두이노를 이용한 스마트 LED 자전거 헬멧의 설계 및 구현)

  • Ahn, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1148-1153
    • /
    • 2016
  • The number of cyclists is on the steady growing for leisure and transportation with the increasing interest in health and environment. However, the number of cycling accidents is also increasing steadily due to the lack of safety awareness and regulations. Focusing on this issue, we propose and develop a smart LED bicycle helmet in order to reduce a risk of cycling accident. The main idea is to change status of the LED on the helmet based on the bicycle's movement and provide motion information of the bicycle for others. To control the LED lights on the helmet, we use the Arduino board which communicates with the LED module through serial connection. We decide motion information by using the values from acceleration and GPS sensors of the smartphone. To receive this information from the smartphone, the control board and the smartphone are connected by Bluetooth.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.