• Title/Summary/Keyword: LED Cell

Search Result 945, Processing Time 0.038 seconds

The Effect of Cervical Cancer Cell Growth Suppression Using ALA Photosensitizer (ALA 광감각제를 이용한 자궁경부암세포 증식 억제 효과 연구)

  • Kim, MinKyung;Park, SoYun;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.539-541
    • /
    • 2022
  • Photodynamic therapy is one of the ways to treat cancer using light and during laser irradiation, photosensitizers react and combine with oxygen to destroy cancer cells. This treatment is in the spotlight as a treatment that minimizes side effects in cancer patients. Among them, photosensitizers differ in the treatment area, treatment effect, and degree of absorption depending on the type. Therefore, in this study, a quantitative evaluation study was conducted on the effect of inhibiting cancer cell proliferation by irradiating blue LEDs on HELA cell lines injected with 5-ALA among photosensitizers.

  • PDF

Tumor suppressor Parkin induces p53-mediated cell cycle arrest in human lung and colorectal cancer cells

  • Byung Chul Jung;Sung Hoon Kim;Yoonjung Cho;Yoon Suk Kim
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.557-562
    • /
    • 2023
  • Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest.

Cell Viability in $G_0$-like Stationary Phase of Schizosaccharomyces pombe: Roles of Psp1/Sds23 and Ufd2

  • Jang, Young-Joo;Ji, Jae-Hoon;Chung, Kyung-Sook;Kim, Dong-Uk;Hoe, kwang-Lae;Won, Mi-Sun;Yoo, Hyang-Sook
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.110-113
    • /
    • 2005
  • Under the condition of nutritional deprivation, actively growing cells prepare to enter $G_0$-like stationary phase. Protein modification by phosphorylation/dephosphorylation or ubiqutination contributes to transfer cells from active cell cycle to dormant stage. We show here that Psp1/Sds23, which functions in association with the 20S cyclosome/APC (1) and is essential for cell cycle progression in Schizosaccharomyces pombe (2), is phosphorylated by stress-activated MAP kinase Sty1 and protein kinase A, as well as Cdc2/cyclinB, upon entry into stationary phase. Three serines at the positions 18,333 and 391 are phosphorylated and overexpression of Psp1 mutated on these sites causes cell death in stationary phase. These modifications are required for the binding of Spufd2, a S.pombe homolog of multiubiquitin chain assembly factor E4 in ubiquitin fusion degradation pathway. Deletion of Spufd2 gene led to increase cell viability in stationary phase, indicating that S. pombe Ufd2 functions to inhibit cell growth at this stage to maintain cell viability. Moreover, Psp1 enhances the multiubiquitination function of Ufd2, suggesting that Psp1 phosphorylated by sty1 and PKA kinases is associated with the Ufd2-dependent protein degradation pathway, which is linked to stress tolerance, to maintain cell viability in the $G_0$-like stationary phase.

  • PDF

CAGE, a Novel Cancer/Testis Antigen Gene, Promotes Cell Motility by Activating ERK and p38 MAPK and Downregulating ROS

  • Shim, Hyeeun;Shim, Eunsook;Lee, Hansoo;Hahn, Janghee;Kang, Dongmin;Lee, Yun-Sil;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.367-375
    • /
    • 2006
  • We previously identified a novel cancer/testis antigen gene CAGE by screening cDNA expression libraries of human testis and gastric cancer cell lines with sera of gastric cancer patients. CAGE is expressed in many cancers and cancer cell lines, but not in normal tissues apart from the testis. In the present study, we investigated its role in the motility of cells of two human cancer cell lines: HeLa and the human hepatic cancer cell line, SNU387. Induction of CAGE by tetracycline or transient transfection enhanced the migration and invasiveness of HeLa cells, but not the adhesiveness of either cell line. Overexpression of CAGE led to activation of ERK and p38 MAPK but not Akt, and inhibition of ERK by PD98059 or p38 MAPK by SB203580 counteracted the CAGE-promoted increase in motility in both cell lines. Overexpression of CAGE also resulted in a reduction of ROS and an increase of ROS scavenging, associated with induction of catalase activity. Inhibition of ERK and p38 MAPK increased ROS levels in cells transfected with CAGE, suggesting that ROS reduce the motility of both cell lines. Inhibition of ERK and p38 MAPK reduced the induction of catalase activity resulting from overexpression of CAGE, and inhibition of catalase reduced CAGE-promoted motility. We conclude that CAGE enhances the motility of cancer cells by activating ERK and p38 MAPK, inducing catalase activity, and reducing ROS levels.

Harnessing the Power of IL-7 to Boost T Cell Immunity in Experimental and Clinical Immunotherapies

  • Jung-Hyun Park;Seung-Woo Lee;Donghoon Choi;Changhyung Lee;Young Chul Sung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.9.1-9.21
    • /
    • 2024
  • The cytokine IL-7 plays critical and nonredundant roles in T cell immunity so that the abundance and availability of IL-7 act as key regulatory mechanisms in T cell immunity. Importantly, IL-7 is not produced by T cells themselves but primarily by non-lymphoid lineage stromal cells and epithelial cells that are limited in their numbers. Thus, T cells depend on cell extrinsic IL-7, and the amount of in vivo IL-7 is considered a major factor in maximizing and maintaining the number of T cells in peripheral tissues. Moreover, IL-7 provides metabolic cues and promotes the survival of both naïve and memory T cells. Thus, IL-7 is also essential for the functional fitness of T cells. In this regard, there has been an extensive effort trying to increase the protein abundance of IL-7 in vivo, with the aim to augment T cell immunity and harness T cell functions in anti-tumor responses. Such approaches started under experimental animal models, but they recently culminated into clinical studies, with striking effects in re-establishing T cell immunity in immunocompromised patients, as well as boosting anti-tumor effects. Depending on the design, glycosylation, and the structure of recombinantly engineered IL-7 proteins and their mimetics, recombinant IL-7 molecules have shown dramatic differences in their stability, efficacy, cellular effects, and overall immune functions. The current review is aimed to summarize the past and present efforts in the field that led to clinical trials, and to highlight the therapeutical significance of IL-7 biology as a master regulator of T cell immunity.

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

Cytotoxic Constituents of Bombycis corpus (백강잠의 세포독성성분)

  • 권학철;문형인;최상훈;이정옥;조세연;정이연;김선여;이강노
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.169-172
    • /
    • 1999
  • The acivity-guided fractionation on the MeOH extract of Bombycis corpus inoculated by Beauberia bassiana 101A led to the isolation of two steroids, 24-ethycholest-4-ene-3,6-dione (1) ergosterol peroxide (2), as active principles. Compounds 1 and 2 exhibited cytotoxicity against cultured human tumor cell lines, A-549, SK-OV-3, SK-MEL-2, XF-498 and HCT-15 with ED50 values ranging from 3.42 to $11.37{\;}\mu\textrm{g}/m$.

  • PDF

Immunotherapy of Tuberculosis (결핵의 면역요법)

  • Kwon, Dong-Won
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.3
    • /
    • pp.209-218
    • /
    • 1992
  • Despite the availability of drugs effective in producing a bacteriological cure, tuberculosis presents continuing problems in its control, especially in the developing world. An effective immunotherapy to be used with chemotherapy is urgently required. Intradermal injection of a suspenison of killed Mycobacterium vaccae switches off the tissue-necrotizing component of the Koch phenomenon, and promotes cell-mediated responses to the common, putative protective, mycobacterial antigens. These properties led to the empolyment of the suspension in immunotherapy as an adjunct to chemotherapy in the treatment of both tuberculosis and leprosy. The evidence leading to these conclusions is reviewed.

  • PDF

NOVEL LEAD STRUCTURES AND MECHANISMS FOR CANCER CHEMOPREVENTION

  • Gerhauser, C.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.35-36
    • /
    • 2001
  • Nutrition influences cancer incidence and offers a variety of preventive dietary factors including non-nutritive plant metabolites. To identify novel potential chemopreventive agents, we have set up cell- and enzyme-based in vitro marker systems relevant for prevention of carcinogenesis in vivo. This experimental approach led to the identification of Xanthohumol (Xn), a prenylated chalcone from hop (Humulus lupulus L.) as a most promising broad-spectrum chemopreventive agent.(omitted)

  • PDF

Nondegenerate Monopole Mode of Single Cell Two-dimensional Triangular Photonic Band Gap Cavity (2차원 단일 셀 삼각형 광결정 공진기에서의 비축퇴된 홀극 모드에 관한 연구)

  • Heo, Jun;Hwang, Jung-Ki;Lee, Yong-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.16-17
    • /
    • 2001
  • 광결정(photonic crystal)은 서로 다른 유전체가 규칙적으로 배열되어 있는 구조로서, 빛이 진행할 수 없는 진동수 영역인 광밴드갭(photonic bandgap)이 존재한다. 광밴드갭 특성으로 빛의 자발 방출과 진행 방향이 조절될 수 있기 때문에, 광결정은 나노 레이저, 광도파관, LED(Light Emitting Diode) 등의 광소자 개발에 응용되고 있다. 지금까지 2차원, 3차원의 광결정에 대한 많은 연구가 수행되어 왔으며, 현재에는 2차원의 슬랩(slab) 구조에 대해 활발하게 연구되고 있다. (중략)

  • PDF