• Title/Summary/Keyword: LED 투광등

Search Result 10, Processing Time 0.021 seconds

Design and Fabrication of a LED Flood Light (LED 투광등의 설계 및 제작)

  • Kim, Dong-Geon;Cha, Sang-Wook;Cho, Hyang-Eun;Kim, Il-Kwon;Kil, Gyung-Suk
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.72-72
    • /
    • 2011
  • 본 논문에서는 기존 투광등을 대체하기 위한 100 W급 LED 투광등에 대하여 기술하였다. LED 투광등을 안정적으로 구동하기 위하여 정전류 회로를 적용하였으며 최대 DC 60 V까지 구동이 가능하다. 3 W급 백색 LED 10개를 직렬로 배치하였으며, 병렬 4채널이 되도록 제작하였다. 시제작 LED 투광등의 입력전압은 DC 48 V이며 채널당 520 mA의 정전류로 구동된다.

  • PDF

The Technical Trend of Heat Dissipation for High Power LED Flood Light (고출력 LED 투광등의 방열 기술 동향)

  • Kim, Ki-Yun;Ham, Kwang-Keun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.214-217
    • /
    • 2009
  • 본 논문에서는 고출력 LED 투광등의 방열 기술 동향을 살펴본다. 이를 위해 LED 방열에 사용되는 대표적 기술로서 LED 패키지 방열 기술, 공랭식 방열 기술, 수냉식 방열 기술, 열전 소자 방열 기술에 대한 기술적 특징을 분석하고 각각의 국내외 관련 기술 개발 현황을 제시한다.

  • PDF

An Experimental Study on the Temperature Distribution according to the Heat Sink Height of 30W LED Floodlight (30W급 LED 투광등 히트싱크 높이변화에 따른 온도분포에 관한 실험적 연구)

  • Kim, Dae-Un;Chung, Han-Shik;Jeong, Hyo-Min;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.150-156
    • /
    • 2017
  • This study tests the characteristics of heat radiation by applying the pin-height variables to 30-W LED floodlights. The angle of the heat sink enables us to identify the characteristics of the heat radiation based on the temperature distribution. The results of the study are as follows. When the heat sinks are set towards the ground, the heat transfer decreases in speed only to expands the temperature distribution, which adversely affects the characteristics of heat radiation and expands the temperature distribution of PCB with the LED chip. We verify that the characteristics of heat radiation are adversely affected when the height of the cooling pin decreases and the heat radiation area decreases, which impedes the heat transfer and increases the temperature distribution on the heat sink.

An Experimental Study on Heatsink Temperature Distribution according to the Wind Speed of a 30W LED Floodlight (30W급 LED 투광등의 풍속에 따른 히트싱크 온도분포에 관한 실험적 연구)

  • Lee, Young Ho;Kim, Dae Un;Chung, Han Shik;Jeong, Hyo Min;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-102
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. More than 80% of the power supply is converted into heat energy, which has a fatal impact on the lifetime of the LED. Therefore, the effective heat dissipation characteristics of a heatsink, such as a 30W floodlight, through forced convection were grasped and the heat transfer characteristics were tested. As a result, it was confirmed that the smaller the number of fins, the more the temperature distribution varies according to the wind velocity. In addition, the larger the number of fins, the smaller the temperature difference according to the wind velocity. Therefore, it was found through this experiment that excellent heat dissipation performance was exhibited as the heat dissipation area and wind velocity increased.

A Study on Heatsink Temperature Distribution according to the Installation Angle of a 30W LED Floodlight (30W급 LED 투광등 설치각도에 따른 히트싱크 온도분포에 관한 연구)

  • Lee, Young Ho;Yi, Chung Seob;Chung, Hanshik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.24-30
    • /
    • 2019
  • This study investigated the heat dissipation characteristics of a heat-sensitive LED. The results of the empirical test showed that the best temperature intensification was found at 90 with 15-fins, and the heatsink installed perpendicular to the direction of the flow of air was directly connected to the air in the largest heat shield area, leading to the best cooling, and the number of fin also resulted increase in the heat discharge area, resulting in the largest cooling action with 15 fins. It was found that the rate of air flow changed in the range of 1.5m/s to 2.5m/s, but only by a deviation of about $2^{\circ}C$ to $3^{\circ}C$ from the current state of 15 fins at 2.5m/s, and the rate of air flow increased, but the performance of the heat release was not significantly increased. As a result wind speed with minimum air flow conditions of 1.5m/s can greatly contribute to the heat dissipation performance.

Comparison of Chromaticity coordinate and Dominant wavelength for General R/G/B/W LEDs Light Source (R/G/B 및 백색 LED광원의 색도좌표와 주파장의 비교 고찰)

  • Hwang, Myung-Keun;Cho, Mee-Ryoung;Shin, Sang-Wuk;Lee, Se-Hyun;Lee, Joo-Sung;Jung, Bong-Man
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.166-169
    • /
    • 2007
  • 최근에 정부의 "15/30 LED조명 보급정책"에 힘입어 개발된 8W급 조명용 LED광원의 CIE 색도좌표 (chromaticity coordinate)와 주파장(dominant wavelength)등을 측정 고찰 하였다. 적색(R), 녹색(G), 청색(B), 백색(W)순으로 주파장은 각각 620[nm], 531[nm], 465[nm], 579[nm]이고, 자극순도(excitation purity)는 0.98, 0.82, 0.97, 0.15이며, 휘도순도(colorimetric putity)는 45[%], 16[%], 279[%], 6[%]로 나타났다. Power LED의 최적배치 설계로서, 특히 백색 LED광원의 경우 백열전구(15 lm/W)에 비해 3배 이상의 높은 효율(47.71m/W)을 보였고, 배광측정에서는 78.7%의 효율로 나타났다. 현재 LED광원은 MR16이나 베이스 타입 등의 형태로 제작하여 스탠드, 복도등, 비상유도등, 침실용 등의 용도에 사용되고, 일부는 LED의 원형이나 면(flat)타입으로 가로등이나 투광등으로도 활용되고 있다. 따라서 이들에 대한 각각의 특성들을 제시해 둘 필요성인 인지되어 국내 최초로 개발된 R/G/B/W 8W급 LED광원에 대한 기본적인 광특성 결과를 얻었으며, 이중에서 HB 백색 LED램프의 색도좌표 값을 얻어 CIE표준광과의 색도좌표(x, y) 위치를 비교 검토할 수 가 있었다.

  • PDF

A Design of Heat-Sink and DMX512 Communication Control for High-Power LEDs (고출력 LED 방열 및 DMX512 통신 제어 설계)

  • Kim, Ki-Yun;Ham, Kwang-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.8
    • /
    • pp.725-732
    • /
    • 2013
  • Recently, various applications for LED lightings are growing continuously due to their better performances such as low power consumption, longer life time, operation speed, controllability, high quality color rendering, and sustainability. However, in developing the high-powered LEDs illumination system, heat-sink problem is one of the important obstacle. In this paper, a heat-sink design with multi-layered structure for high-powered LEDs is proposed, which is composed of metal core PCB, heat-pipes, heat-sink plates, and fans. And also, in this paper, a design for LED controls using DMX512 protocols through RS-485 communications is proposed, which is considered as de facto international standard in LEDs illumination control and is widely used in landscape lighting and stage lighting. In this paper, LED control and its application techniques are introduced and the method of wireless remote control for main controller is proposed.

Efficient Multicasting Mechanism for Mobile Computing Environment (AC Direct IC를 이용한 25W급 LED 조명기 설계에 관한 연구)

  • Jeong, Jae-hoon;Gam, Ji-hyeon;Jo, So-hyeon;Woo, Joo;Kim, Min;Kim, Gwan hyeong;Lee, Sung-min;Byun, Gi-sig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.510-511
    • /
    • 2017
  • In this paper, we have studied to minimize the lifetime and fault occurrence of LED fixtures, which have a short lifetime and frequent faults. In the current LED chip, the lifetime is semi-permanent, but compared to the lifetime of the LED chip, Drivers do not last long. In recent years, low-priced LED illuminators such as those from China have entered the market, and many consumers are perceiving LED illuminators. In order to solve these problems, we designed an LED illuminator of 25W class by using AC Direct IC, which has a longer lifetime than the conventional driver, by removing the electrolytic capacitor in the LED driving driver which is the cause of the failure.

  • PDF

Design and Fabrication of a LED Floodlight for Naval Vessels (함정용 LED 투광등 설계 및 제작)

  • Kim, Se-Jin;Kil, Gyung-Suk;Kim, Dong-Geon;Kim, Il-Kwon;Song, Dong-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.771-777
    • /
    • 2013
  • This paper dealt with the development of a LED floodlight for naval vessels to replace the conventional floodlight using an incandescent and a halogen lamp. We found a technical solution for current problems of conventional lights and also improved optical characteristics by developing a LED floodlight which has a typical long-lived light source with high efficiency. To satisfy the requirements specified in Korea Standard Vessels (KS V), the optical structure was designed with selected LED package and lens. A LED module was composed of 10 LEDs in series for stable luminous output, and an aluminium heat sink was adopted for effective heat-radiation design. The LED floodlight was fabricated as a module type so that it can easily replace the conventional light source. The power consumption of the prototype floodlight was only a tenth of a conventional one with the same optical performance. Also, a test showed the floodlight satisfied the electrical, optical and environmental requirements of the standards.

Development of LED Module Control-based PWM Current for Control of Heat-dissipation (방열특성 제어를 위한 PWM 전류제어 기반 LED 모듈 개발)

  • Lee, Seung-Hyun;Moon, Han Joo;Hue, Seong-bum;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.129-135
    • /
    • 2015
  • This paper shows significant methods that improve the lifespan of LED modules as well as efficiently using an aluminum heat-sink for LED module in high power. It proposes a method that raises stability and lifespan to protect LED modules and the power unit when the LED module has been used for a long hours at high temperatures. During the research, we applied a method of pulse-width modulation (PWM) in order to prevent the phenomenon that the entire power of a system is turned off and the lifespan is reduced when the LED nodule reacts to the high temperatures. To protect the LED module and SMPS based on high efficiency, a temperature sensor is attached underneath the circuit board and the sensor measures the temperature of circuit board when the LED module is powered on. The electrical power connected to SMPS is controlled by PWM when the temperature of the LED module reaches a particular temperature.