• Title/Summary/Keyword: LED's strip distance

Search Result 3, Processing Time 0.022 seconds

Design and Evaluation of LCD Backlight Unit by LED Array Modules

  • Aung, Aye Thida;Lee, Seung-Min;Yang, Jong-Kyung;Park, Dae-Hee;Lee, Seong-Jin;Lee, Jong-Chan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.110-115
    • /
    • 2008
  • In this paper, we have designated a 42-inch RGB LED BLU, 80 % above illuminance. A desirable brightness performance was attained, by doing anti-parallel configuration, a fitting of LED's strip distance and a height of the top of LED to the back of the LCD. We get the 85.81 % of the brightness uniformity which has 12.8 mm away from LED's top and LCD's back and 51.41 mm of the same spacing between LED's strip in simulation and 82.24 % in experiment.

Optical Analysis of Backlight Units Using RGB LED Array (RGB LED 배열을 사용하는 역광선 단위의 광학 분석)

  • Aung, Aye Thida;Lee, Seung-Min;Yang, Jong-Kyung;Yim, Youn-Chan;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.375-376
    • /
    • 2007
  • In this work, we have simulated a 42-inch LED BLU which was based on 300 RGB LEDs. We have done an adjustment of LEDs' strip distance and a height of the top of the LED to the back of the LCD to get white color uniformity. So, we have changed simultaneously the distance between the top of the LEDs and the back of the LCD. Moreover, we set a fixed position for the horizontal of LED's pitch. And then, we have experimented and compared to our simulation data.

  • PDF

INFLUENCE OF TIP DISTANCE ON DEGREE OF CONVERSION OF COMPOSITE RESIN IN CURING WITH VARIOUS LIGHT SOURCES (광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향)

  • Kim, Sang-Bae;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.273-279
    • /
    • 2004
  • Recently, newly developed single high-intensity LED curing lights for composite resins are claimed to have a higher intensity than previous LED curing lights and to results in optimal properties and short curing time. The purpose of this study was to determine the curing effectiveness of the curing units and to evaluate the relationship between the degree of polymerization and distance from curing light tip end to resin surface. One composite resin was tested(Filtek Z250). Thin film specimens were cured with a LED curing unit(Elipar Freelight 2, 10s), Plasma Arc curing unit(Flipo, 6s), Halogen curing light(XL3000, 20s) at four curing light tip to the resin surface(0mm, 2mm, 4mm, 6mm). Degree of conversion of composite resins were determined by a Fourier Transform Infrared Spectrometer(FTIR). From the present study, the following results were obtained. 1. In all curing units, relative light intensity was significantly decreased according to the increase of distance of light tip to the resin surface(p<0.05). LED curing units showed a higher percentile decrease in intensity than other curing units. 2. In all curing units, degree of conversion was decreased as increase of the distance but no statistically significant difference(p>0.05) except between 4mm and 6mm(p<0.05). 3. When comparing degree of conversion of light curing units at each distance(0mm, 2mm, 4mm, 6mm), LED curing light had a higher degree of conversion than plasma arc and halogen curing lights at 0, 2, 4mm(p<0.05). At 6mm, there was a no significant difference among the curing units(p>0.05).

  • PDF