• Title/Summary/Keyword: LDH subunit

Search Result 15, Processing Time 0.019 seconds

Studies on the Change of Isozyme Patterns of Lactate and Malate Dehydrogenases During Embryonic Development of Some Amphibians (兩棲類 胚發生에 EK른 Lactate Dehydrogenase 및 Malate Dehydrogenase의 Isozyme 변화에 관하여)

  • Park, Young-Chul;Ha, Doo-Bong
    • The Korean Journal of Zoology
    • /
    • v.23 no.4
    • /
    • pp.263-272
    • /
    • 1980
  • Polyacrylamide gel electrophoresis was used to investigate the patterns of LDH and MDH isozymes in the embryo and adult of amphibia; Rana nigromaculata, Rana plancyi chosenica and Hynobius leechii. Rana nigromaculata is considered to be heterozygous for the gene specifying the "B" subunit of LDH, and Hynobius leechii to be heterozygous for the gene specifying the "A" subunit of LDH. The LDH isozyme paatern of embryos of the above three species is characterized by a gradual increase in the activity of LDH-5 (muscular form)during development. Two or three molecular forms of MDH is present steadily from early embryos and in adult. Of the MDH isozymes, the more cathodic one (MDH-m) appears weakly in early developing stages, but increases slowly in the activity as the embryo develops.the embryo develops.

  • PDF

Metabolic Adjustment of Lactate Dehydrogenase Isozymes to a Change in Dissolved Oxygen in Bluegill (Lepomis macrochirus) (파랑볼우럭(Lepomis macrochirus)에서 용존산소량의 변화에 대한 젖산탈수소효소 동위효소들의 대사조절)

  • Ku, Bora;Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1066-1071
    • /
    • 2021
  • The aim of this study was to examine the metabolic adjustment of lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes to a change in dissolved oxygen (DO) in bluegill (Lepomis macrochirus). After bluegills were adapted to a constant environment in an aquarium, the DO was changed to investigate the activity of LDH isozyme and the relative ratio of subunits A, B, and C for each tissue. When the DO was decreased from 18 ppm to 6 ppm, LDH in skeletal muscle, heart, and brain tissues recovered to the level of control activity within 12, 12, and 6 hr, respectively. LDH activity changed in accordance with a change in DO. The compensation was performed rapidly and is thought to be an important function of LDH in enabling bluegills to adapt to their environment. In bluegill heart, eye, and brain tissues, the relative ratio of subunit A increased and showed a tendency to recover similarly to the subunit ratio of control groups up to 12 hr. It is thought that the anaerobic metabolism using subunit A was increased in the initial stage when DO was changed. In addition, the results revealed that subunit C was more similar to subunit A than subunit B. In bluegills, subunits A and C of LDH seem to be evolutionarily similar. LDH isozymes, mainly containing subunits A and C, are likely responsible for the function of pyruvate reductase, which plays a role in making the bluegill adapt to a hypoxic environment through anaerobic metabolism.

Characterization and Evolutionary Relationship of Lactate Dehydrogenase in Liver of Lampetra japonica and Liver-specific C4 Isozyme in Gadus macrocephdus. (칠성장어(Lampetra japnica) 간조직 젖산탈수소효소와 대구(Gadus macrocephalus) liver-Specific C4동위효소의 특성 및 진화적 관계)

  • 박선영;조성규;염정주
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.708-715
    • /
    • 2004
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) in liver of Lempetra japonica was purified in buffer of affinity chromatography. The liver-specific $C_4$ isozyme of Gadus macrocephalus was purified by heat treatment, affinity chromatography, and DEAE-Sephacel chromatography. The liver-specific $C_4$ isozyme was eluted in a buffer containing NAD+ and was coeluted with $B_4$isozyme in plain buffer of affinity chromagraphy. Liver-specific $C_4$ isozyme in G. macrocephalus was the most thermostable, and$B_4$isozyme was more stable than $A_4$. The LDH in the fraction of pH 7.45 purified from the liver of L. iaponica by chromatofocusing was more inhibited by pyruvate than purified LDH. The optimum pH of the LDH isozyme in the liver of L. japonica was 7.5 and that of liver-specific$C_4$ isozyme was 8.5. The LDH in liver of L. japonica made complexes more with antibody against Coreoperca herzi$A_4$ and liver-specific $C_4$ than with that against eye-specific $C_4$. Therefore, the structure of the LDH in liver of L. japonica might be similarly evolved to that of subunit A and liver-specific $C_4$ isozyme in liver tissue of G. macrocephalus. The evolution rate of subunit C is faster than that of subunit A. LDH in liver of L. japonica has not one isozyme but isozymes and it was also found out to have not only subunit A and B but also subunit C.

Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana (황소개구리(Rana catesbeiana) 조직의 젖산탈수소효소의 역학적 특성)

  • Yum, Jung Joo;Ha, Eun Sung
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.118-127
    • /
    • 2014
  • The kinetic properties and isozyme expression of lactate dehydrogenase (EC 1.1.1.27; LDH) in tissues from Rana catesbeiana I and II collected from February (I) and August (II) were studied. LDH activities, A4 isozyme, and LDH/citrate synthase (EC 4.1.3.7; CS) were high in skeletal muscle from R. catesbeiana I, and LDH $B_4$ isozyme increased in several tissues of R. catesbeiana II. In particular, LDH activities were high in heart and brain tissues from R. catesbeiana II. LDH eye-specific C isozyme, detected by native polyacrylamide gel electrophoresis after immunoprecipitation, was expressed in eye tissue and was more similar to the $B_4$ than $A_4$ isozyme. LDH $A_4$ isozyme was purified by oxamate-linked affinity chromatography, and the molecular weight of subunit A was 32.0 kDa. In R. catesbeiana II, levels of $Km^{PYU}$, $Vmax^{LAC}$, and tolerance to lactate of LDH were high in all tissues, and $Vmax^{PYU}$ of LDH in heart and brain tissue was highly detected. Purified $A_4$ isozyme and LDH in eye tissue were highly tolerate compared to others. The $Km^{LAC}$ value was highly measured compared to $Km^{PYU}$. The degree of inhibition by 10 mM of pyruvate on LDH activities in tissues from R. catesbeiana I and II was more pronounced as the ratio of subunit B increased. As a result, characteristic expression of LDH eye-specific C was found in R. catesbeiana. Anaerobic metabolism seemed to predominate as the LDH of skeletal muscle from I showed higher activity. It also appeared that R. catesbeiana II adapted well to incremental increases in LDH B, becoming tolerant to the lactate of LDH in tissues.

Characterization of Lactate Dehydrogenase in Acanthogobius hasta (풀망둑(Acanthogobius hasta) 젖산탈수소효소의 특성)

  • Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.264-272
    • /
    • 2008
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes in tissues from Acanthogobius hasta were characterized by biochemical, immunochemical and kinetic methods. The activities of LDH in skeletal muscle and eye tissues were 65.30 and 53.25 units, but LDH activities in heart and liver tissues were very low. LDH/CS (EC 4.1.3.7, citrate synthase) in skeletal muscle was the highest as 22.29. Specific activities of LDH in brain, eye and skeletal muscle were 56.45, 38.04 and 11.0 units/mg, respectively. The LDH isozymes in tissues were separated by polyacrylamide gel electrophoresis after immunoprecipitation with antiserum against $A_4,\;B_4$ eye-specific $C_4$ and liver-specific $C_4$. LDH $AC_4$ isozymes were detected predominantly in skeletal muscle, brain and eye tissues, and $B_4$ isozyme was detected in heart. Anodal eye-specific $C_4$ and cathodal liver-specific $C_4$ were coexpressed in A. hasta. The eye-specific $C_4$ isozyme showed higher activity in eye tissue, but liver-specific $C_4$ isozyme showed lower activity in liver. As a result, one part of molecular structures in $A_4\;and\;C_4,\;A_4\;and\;B_4$, and eye-specific $C_4$ and liver-specific $C_4$ were similar, but in $B_4\;and\;C_4$ were different with each other. Therefore the subunit A may be conservative in evolution, and the evolution of subunit B seems to be faster than that of subunit A. The LDH $A_4$ isozyme of skeletal muscle was purified in the fraction from elution with NAD+ containing buffer of affinity chromatography and eye-specific $C_4$ isozyme was eluted right after $A_4$, so the structure of eye-specific $C_4$ isozyme is similar to $A_4$. And LDH activity remained 35.22-43.47% as a result of the inhibition by pyruvate, the Michaelis-Menten constant values for pyruvate was 0.080-0.098 mM, and Vmax were 153.85 units, 35.09 units in skeletal muscle and eye, respectively. Also the $B_4$ isozyme was the thermo-stablest and $C_4$ was stabler than $A_4$ isozyme. The optimum pH of LDH was 6.5. The results mentioned above indicate that isozymes in tissues showed the properties between LDH $A_4\;and\;B_4$ isozyme as A. hasta was adapted to hypoxic conditions. Also LDH seems to function more effectively under anaerobic condition because LDH in skeletal muscle and eye tissues have high affinity for pyruvate.

Changes of LDH Subunit Combinations Induced by Tetrodotoxin (Tetrodotoxin에 의하여 유발되는 LDH 하부단위체 조합의 변화)

  • Kim, Sang-Yeop;Yum, Jung-Joo
    • The Korean Journal of Zoology
    • /
    • v.28 no.4
    • /
    • pp.227-236
    • /
    • 1985
  • In an attempt to make a scrutiny into a mechanism for the formation of quaternary structure of LDH isozymes, male mice were intraperitoneally exposed to a wide range of tetrodotoxin concentration and the changes in relative percentage of the five isozymes were monitored by electrophoresis and subsequent densitometry. The observations that a conspicuous increase of the $H_4$ isozyme was demonstrated in nearly all brain tissues, that the $M_4$ isozyme of skeletal muscle tissue was slightly increased while the $M_3H$ and $M_2H_2$ isozymes were decreased, that the M/H ratio was strikingly reduced in heart tissue and that assembly of $H_4$ isozyme was revealed in liver tissue although its rate was extremely low suggest that new intracellular ionic environment established by compulsory change in Donnan equilibrium could alter the LDH isozyme distribution. The reduction of assembly of $M_3H$ isozyme found in mouse tissues exposed to tetrodotoxin also seems to suggest that the subunit combination of 3M+H is very unfavorable in an intracellular environment deviated from its accustomed one. It was reaffirmed that there might occur TTX-insensitive sodium channels in plasma membrane.

  • PDF

Purification and Characterization of Lactate Dehydrogenase Isozymes in Channa argus (가물치(Channa argus) 젖산탈수소효소 동위효소들의 정제 및 특성)

  • Park, Eun-Mi;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.260-268
    • /
    • 2010
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes in tissues from Channa argus were purified and characterized by biochemical, immunochemical and kinetic methods. The activity of LDH in skeletal muscle was the highest at 380.4 units and those in heart, eye and brain tissues were 13.4, 3,5 and 5.4 units, respectively. Citrate synthase (EC 4.1.3.7, CS) activity in heart tissue was the highest at 20.7 units. LDH/CS in skeletal muscle, heart, eye and brain tissues were 172.9, 0.6, 0.32 and 0.47. Protein concentration in skeletal muscle tissue was 14.7 mg/g and specific activities of LDH in skeletal muscle, heart, eye and brain tissues were 25.88, 0.79, 0.31 and 1.38 units/mg, respectively. Therefore, skeletal muscle tissue was anaerobic and heart tissue was aerobic. The LDH isozymes in tissues were identified by polyacrylamide gel electrophoresis, immunoprecipitation and Western blot with antiserum against $A_4$, $B_4$, and eye-specific $C_4$. LDH $A_4$, $A_3B$, $A_2B_2$. $AB_3$ and $B_4$ isozymes were detected in every tissue, $C_4$, $AC_3$, $A_2C_2$ and $A_3C$ were detected in eye tissue, and $A_3C$ was found in brain tissue. LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, $B_4$, eye-specific $C_4$ isozymes were purified by affinity chromatography and Preparative PAGE Cells. The LDH $A_4$ isozyme was purified in the fraction from elution with $NAD^+$ containing buffer of affinity chromatography. Eye-specific $C_4$ isozyme was eluted right after $A_4$, after which $B_4$ isozyme was eluted with plain buffer. As a result, one part of molecular structures in $A_4$, $B_4$ and eye-specific $C_4$ were similar, but were different from each other in $B_4$ and $C_4$. Therefore the subunit A may be conservative in evolution, and the evolution of subunit B seems to be faster than that of subunit A. The activity of LDH $A_4$, $A_2B_2$, $B_4$, and eye-specific $C_4$ isozymes remained at 39.98, 21.28, 19.67 and 16.87% as a result of the inhibition by 10 mM of pyruvate, so the degree of inhibition was very high. The $Km^{PYR}$ values were 0.17, 0.27 and 0.133 mM in $A_4$, $B_4$ and eye-specific $C_4$ isozymes, respectively. The optimum pH of LDH $A_4$, $B_4$, eye-specific $C_4$, $A_2B_2$, $A_3B$, and $AB_3$ were pH 6.5, pH 8.5, pH 5.5, pH 6.0-6.5, pH 5.0 and pH 7.5. The $A_4$ and heterotetramer isozymes stabilized a broad range of pH. Especially, LDH activities in skeletal muscle tissue were high, resulting in a high degree of muscle activity.LDH metabolism in eye tissue seems to be converted faster from pyruvate to lactate by eye-specific $C_4$ isozyme as eye-specific $C_4$ have the highest affinity for pyruvate, and right after the conversion, oxidation of lactate was induced by $A_4$ isozyme. It was found that expression of Ldh-C, affinity to substrate and reaction time of $C_4$ isozyme were different according to the ecological environmental and feeding capturing patterns.

The Crystal Structure of L-Leucine Dehydrogenase from Pseudomonas aeruginosa

  • Kim, Seheon;Koh, Seri;Kang, Wonchull;Yang, Jin Kuk
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.495-501
    • /
    • 2022
  • Leucine dehydrogenase (LDH, EC 1.4.1.9) catalyzes the reversible deamination of branched-chain L-amino acids to their corresponding keto acids using NAD+ as a cofactor. LDH generally adopts an octameric structure with D4 symmetry, generating a molecular mass of approximately 400 kDa. Here, the crystal structure of the LDH from Pseudomonas aeruginosa (Pa-LDH) was determined at 2.5 Å resolution. Interestingly, the crystal structure shows that the enzyme exists as a dimer with C2 symmetry in a crystal lattice. The dimeric structure was also observed in solution using multiangle light scattering coupled with size-exclusion chromatography. The enzyme assay revealed that the specific activity was maximal at 60℃ and pH 8.5. The kinetic parameters for three different amino acid and the cofactor (NAD+) were determined. The crystal structure represents that the subunit has more compact structure than homologs' structure. In addition, the crystal structure along with sequence alignments indicates a set of non-conserved arginine residues which are important in stability. Subsequent mutation analysis for those residues revealed that the enzyme activity reduced to one third of the wild type. These results provide structural and biochemical insights for its future studies on its application for industrial purposes.

Changes of Activities and Isozymes of Lactate Dehydrogenase in Coreoperca herzi and Pseudogobio esocinus Acclimated to Rapid Increase of Dissolved Oxygen (급격한 용존산소량 증가에 순응한 꺽지(Coreoperca herzi)와 모래무지(Pseudogobioesocinus) 젖산탈수소효소 활성과 동위효소의 변화)

  • Cho Sung Kyu;Yum Jung Joo
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.71-79
    • /
    • 2005
  • The metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) and $C_4$ isozyme were studied in tissues of Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen (DO). In C. herzi the LDH activity was changed $35-39\%$ in brain and liver tissues, and within $20\%$ in other tissues. The $B_4$ isozyme was increased and isozyme containing subunit C was decreased in muscle tissue. The $B_4$ isozyme was increased in heart and kidney. In P. esocinus, the LDH activity in liver tissues was largely increased to $150\%$ for 30 minute and $70\%$ in other tissues. The $A_4$ isozyme was increased in muscle and $B_4$ isozyme was increased in other tissues. Especially, the metabolism of liver tissue in P. esocinus was regulated by increasing liver-specific $C_4$ and decreasing $A_4$ isozyme. But the metabolism of eye tissue in C. herzi was regulated by decreasing LDH activity and eye-specific $C_4$ isozyme. The LDH activity and LDH isozyme in P. esocinus were largely increased than C. herzi acclimated to rapid increase of DO. And eye-specific $C_4$ and liver-specific $C_4$ isozymes played role as lactate oxidase. Therefore, the response of species acclimated to rapid increase of DO seems to be variable, perhaps due to prior exposure to environmental conditions.

Variation of Lactate Dehydrogenase Isozymes in Angelfish (Pterophyllum scalare) according to Acute Environmental Change (급격한 환경변화에 대한 angelfish (Pterophyllum scalare) 젖산탈수소효소 동위효소의 변화)

  • An, Chang-Su;Cho, Sung-Kyu;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.416-423
    • /
    • 2010
  • In this study, the properties and gene expression of the lactate dehydrogenase (EC 1.1.1.27, LDH) isozyme were studied in angelfish (Pterophyllum scalare) - known for their adaptation to the low oxygen environment of the tropics - which were acclimated to acute temperature change ($27{\pm}0.5{\rightarrow}18{\pm}0.5^{\circ}C$) and dissolved oxygen (DO) change ($6{\pm}1{\rightarrow}18\;ppm$) for 2 hours. The properties of the LDH isozymes were confirmed in the native-polyacrylamide gel electrophoresis, Western blot analysis and enzyme activity measurement. Liver- and eye-specific Ldh-C gene were expressed in liver, eye and brain tissues. Through Western blot analysis, the LDH $A_4$ isozyme was shown to have a more cathodal mobility relative to the $B_4$ isozyme. In the liver tissue, the LDH $A_4$ isozyme increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $C_4$ isozymes increased with DO increment, while the $B_4$ isozyme decreased. In the eye tissue, the LDH $A_4$ and B4 isozymse increased with temperature drop while the $B_4$ isozyme decreased. The LDH $A_4$ and $B_4$ isozymes increased with DO increment, but the $C_4$ isozyme and isozymes including the subunit C decreased. In the heart tissue, LDH activity increased with DO increment, as well as the LDH $B_4$ isozyme. In the brain tissue, the LDH $A_4$ and $B_4$ isozymes increased with temperature drop. The LDH $B_4$ isozyme increased with DO increment. Accordingly, since the liver- and eye-specific Ldh-C are influenced by changes in DO and the LDH $B_4$ and $C_4$ isozymes are relatively controlled in the liver and eye tissues, the $C_4$ isozyme can be considered to have a lactate oxidase function.