• Title/Summary/Keyword: LDH release

Search Result 250, Processing Time 0.029 seconds

Effects of Taeumin Chungsimyeunjatang on the Cerebral neurons injured by Hydrogen Peroxide (태음인(太陰人) 청심연자탕(淸心蓮子湯)이 Hydrogen Peroxide에 손상(損傷)된 백서(白鼠)의 대뇌신경세포(大腦神經細胞)에 미치는 영향(影響))

  • Ok, Yun-young;Ryu, Do-gon;Kim, Kyung-yo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.2
    • /
    • pp.251-266
    • /
    • 1999
  • 1. Purpose : The purpose of this study was to determine the effects of Chungsimyeunjatang on the cerebral neurons injured by hydrogen peroxide($H_2O_2$). 2. Methods : I observed cell viability in mouse cerebral neurons exposed to hydrogen peroxide by NR assay and MTT assay and determined lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. After administration of Chungsimyeunjatang water extracts, I observed significant changes of cell viability, lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide. 3. Results : Hydrogen peroxide showed neurotoxicity. Cell viability in mouse cerebral neurons exposed to hydrogen peroxide decreased in NR assay and MTT assay. Lipid peroxidation and amounts of LDH release in mouse cerebral neurons exposed to hydrogen peroxide increased. Chungsimyeunjatang was very effective in blocking hydrogen peroxide-induced neurotoxicity.

  • PDF

Anti-oxidative Effects of Dendrobii Herba on Toxic Agent Induced Kidney Cell Injury (석곡(石斛)의 항산화 효과)

  • Kim, Young-Gyun;Yang, Gi-Ho;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.53-60
    • /
    • 2005
  • Objectives : This study was carried out to determine if Dendrobii Herba have protective effect against cell injury induced by various toxic agents in rat kidney slices. Water(DWe) and methanol(DMe) extracts were prepared for this experiment. Methods : Cell injury was estimated by measuring lactate dehydrogenase(LDH). Lipid peroxidation was examined by measuring malondialdehyde, a product of lipid peroxidation. Results : DMe prevented the LDH release by $CCl_4$, menadione, tert-butyl hydroperoxide and mercury treatment in vitro in kidney slices, but DWe prevented the LDH release by $CCl_4$ and mercury. DMe also prevented reduction in GSH and lipid peroxidation induced by $CCl_4$ and mercury. Conclusion : Thus, DMe may have more powerful efficacy on anti-oxidative effects when compared with DWe. And further studies have to be followed concerned with extraction of Dendrobii Herba and its change of effects.

  • PDF

Anti-Oxidative Effects of Scutellariae Radix (황금(黃芩)의 항산화 효과)

  • Oh, Won-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.67-74
    • /
    • 2005
  • Objectives : This study was carried out to determine if Scutellariae Radix have protective effect against cell injury induced by various toxic agents in rat kidney slices. Methods : Water(SWe) and methanol(SMe) extracts were prepared for this experiment. Cell injury was estimated by measuring lactate dehydrogenase(LDH). Lipid peroxidation was examined by measuring malondialdehyde. Results : SMe prevented the LDH release by CCl4, menadione, tert-butyl hydroperoxide and mercury treatment in vitro in kidney slices, but SWe prevented the LDH release by CCl4 and mercury. SMe also prevented reduction in GSH by CCl4 and lipid peroxidation induced by mercury. Conclusions : Thus, SMe may have more powerful efficacy on anti-oxidative effects when compared with SWe. And further studies have to be followed concerned with procedure of extraction of SMe and its change of effects.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Lee, Sun-Mee;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.199-199
    • /
    • 1998
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on retrograded aortic perfusion model. Hearts from Sprague-Dawley rats were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, 37) on a Langendorff apparatus. After equilibration, hearts were treated with ursodeoxycholic acid 10, 20, 40 and 800 M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. Following 25 min of global ischemia, ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular diastolic pressure, coronary flow and time to contracture formation) and biochemical (lactate dehydrogenase, LDH) endpoints were evaluated. In vehicle group, time to contracture formation (TTC) value was 19.5 min during ischemia, LVDP was 20.8 mmHg at the endpoint of reperfusion and LDH activity in reperfusate was 59.7 U/L. Cardioprotective effects of UDCA following ischemia/reperfusion consisted of a reduced TTC (EC$\_$25/ = 16.10 M), reduced LDH release and enhanced recovery of contractile function during reperfusion. Especially, the treatments of UDCA 80 M remarkably increased LVDP (68.1 mmHg) and reduced LDH release (33.2 U/L). Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage, in agreement with physiological and biochemical parameters.

  • PDF

Effect of Ursodeoxycholic Acid on Ischemia/Reperfusion Injury in Isolated Rat Heart

  • Lee, Woo-Yong;Han, Suk-Hee;Cho, Tai-Soon;Yoo, Young-Hyo;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.22 no.5
    • /
    • pp.479-484
    • /
    • 1999
  • In this study, the effects of ursodeoxycholic acid (UDCA) on ischemia/reperfusion injury were investigated on isolated heart perfusion model. Hearts were perfused with oxygenated Krebs-Henseleit solution (pH 7.4, $37^{\circ}C$) on a Langendroff apparatus. After equilibration, isolated hearts were treated with UDCA 20 to 160 $\mu$M or vehicle (0.04% DMSO) for 10 min before the onset of ischemia. After global ischemia (30 min), ischemic hearts were reperfused and allowed to recover for 30 min. The physiological (i.e. heart rate, left ventricular developed pressure, coronary flow, double product and time to contracture formation) and biochemical (lactate dehydrogenase; LDH) parameters were evaluated. In vehicle-treated group, time to contracture formation was 21.4 min during ischemia, LVDP was 18.5 mmHg at the endpoint or reperfusion and LDH activity in total reperfusion effluent was 54.0 U/L. Cardioprotective effects of UDCA against ischemia/reperfusion consisted of a reduced TTC $(EC_{25}=97.3{\mu}M)$, reduced LDH release and enhanced recovery of cardiac contractile function during reperfusion. Especially, the treatments of UDCA 80 and $160 {\mu}M $ significantly increased LVDP and reduced LDH release. Our findings suggest that UDCA ameliorates ischemia/reperfusion-induced myocardial damage.

  • PDF

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Effects of Dexamethasone and DHEA on the Responses of Rat Cerebral Cortical Astrocytes to Lipopolysaccharide and Antimycin A

  • Choi, Sang-Hyun;Kim, Hyung-Gun;Kim, Chang-Keun;Park, Nan-Hyang;Choi, Dong-Hee;Shim, In-Sop;Chun, Boe-Gwun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • As part of a study on the effects of dexamethasone and dehydroepiandrosterone (DHEA) on the biological roles of astrocytes in brain injury, this study evaluated the effects of dexamethasone and DHEA on the responses of primary cultured rat cortical astrocytes to lipopolysaccharide (LPS) and antimycin A. Dexamethasone decreased spontaneous release of LDH from astrocytes, and the dexamethasone effect was inhibited by DHEA. However, the inhibitory effect of DHEA on the dexamethasone-induced decrease of LDH release was not shown in astrocytes treated with LPS, and antimycin A-induced LDH release was not affected by dexamethasone or DHEA. Unlike dexamethasone, DHEA increased MTT value of astrocytes and also attenuated the antimycin A-induced decrease of MTT value. Glutamine synthetase activity of astrocytes was not affected by DHEA or LPS but increased by dexamethasone, and the dexamethasone- dependent increase was attenuated by DHEA. However, antimycin A markedly decreased glutamine synthetase activity, and the antimycin A effect was not affected by dexamethasone or DHEA. Basal release of $[^3H]arachidonic$ acid from astrocytes was moderately increased by LPS and markedly by antimycin A. Dexamethasone inhibited the basal and LPS-dependent releases of $[^3H]arachidonic$ acid, but neither dexamethasone nor DHEA affected antimycin A-induced $[^3H]arachidonic$ acid release. Basal IL-6 release from astrocytes was not affected by dexamethasone or DHEA but markedly increased by LPS and antimycin A. LPS-induced IL-6 release was attenuated by dexamethasone but was little affected by DHEA, and antimycin A-induced IL-6 release was attenuated by DHEA as well as dexamethasone. At the concentration of dexamethasone and DHEA which does not affect basal NO release from astrocytes, they moderately inhibited LPS-induced NO release but little affected antimycin A-induced decrease of NO release. Taken together, these results suggest that dexamethasone and DHEA, in somewhat different manners, modulate the astrocyte reactivity in brain injuries inhibitorily.

  • PDF

Screening for Inhibitory Effect of Solvent Fractions Prepared from Herbal Drugs on $CCl_4$-induced Cytotoxicity in Primary Cultured Rat Hepatocytes and Evaluation of Antihepatotoxicity in Vivo (일차 배양 흰쥐 간세포에서 사염화탄소 유발 세포독성에 대한 수종 생약 용매 분획의 억제효과 검색과 in vivo 간보호 작용 평가)

  • Kim, Young-Sook;Kyung, Jong-Su;Park, Ki-Hyun
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.52-58
    • /
    • 1996
  • Solvent fractions were prepared from traditional herbal drugs which of methanol extracts inhibited $CCl_4$-induced cytotoxicity in primary cultured rat hepatocytes and c ontinuously assayed their effects. Ethylacetate and n-buthanol fractions from Cibotii Rhizoma and chloroform fraction from Gelatina Nigra inhibited the release of LDH and GPT from $CCl_4$-treated hepatocytes, respectively. Water fraction (WAR) among solvent fractions from Astragali Radix showed the most potent inhibitory effect on the release of GOT or GPT by treatment with $CCl_4$. All of solvent fractions prepared from Eucommiae Cortex had no effect on $CCl_4$-induced cytotoxicity. Chloroform and ethylacetate fractions from Rehmanniae Radix Preparata increased the release of GPT from $CCl_4$-treated hepatocytes. n-Hexan, chloroform or ethylacetate fraction from 5 herbal drugs increased the release of LDH, GOT or GPT from normal hepatocytes at the dose of 1.Omg/ml. Administration of WAR suppressed the elevation of GOT, ALP activities and MDA contents in the serum as well as in the liver tissue of $CCl_4$-intoxicated rats. Based on these results, isolation of antihepatotoxic substances from WAR is under the process.

  • PDF

Protective Effect of Coptidis Rhizoma on SNAP-Induced Cytotoxicity in Pancreatic RINm5F Cells (SNAP 유도성 RINm5F 세포 독성에 대한 황연 추출물의 방어효과)

  • 류도곤;권강범;양정예;김은경;김강산
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • Objectives : Coptidis rhizoma (CR) is an oriental medicine that has been used in many traditional prescriptions against diabetes mellitus in Korea for centuries. Our purpose was to determine the protective effect and its action mechanism of CR on the cytotoxicity of pancreatic -cell line (RINm5F cell). Methods : In this experiment, we used methods such as MTT assay for detection of cytotoxicity, DNA fragmentation assay for detection of apoptotic cell death, LDH activity assay for detection of necrotic cell death, and measurement of $DiOC_{6}$ (3) retention for detection of mitochondrial membrane potential (MMP). Background : Nitric oxide (NO) is believed to playa key role in the process of pancreatic -cell destruction leading to insulin-dependent diabetes mellitus (IDDM). Results : Exposure of RINm5F cells to chemical NO donor such as S-nitroso-N-acetylpenicillamine (SNAP) induced cytotoxic events such as DNA fragmentation and lactate dehydrogenase (LDH) release into medium. However, pretreatment of RINm5F cells with CR extract ($10~50{\mu\textrm{g}}/ml$) for 3 hours prevented SNAP-induced DNA fragmentation and LDH release into medium through the inhibition of MMP disruption. Conclusions : These results suggest that CR may be a candidate for a therapeutic or preventing agent against IDDM.

  • PDF

Study on the Effect of Gamiyukmijihwang-tang on the Brain damage (가미육미지황탕이 뇌신경세포 손상 및 뇌허혈 병태 모델에 미치는 영향)

  • Kim Jin hyung;Kim Yun Sik;Seol In Chan;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.467-475
    • /
    • 2003
  • This studt was investigated to prove the effect of GMYM on the brain damage. The results were as follows; 1. GMYM showed significantly inhibitory effect on LDH release by NMDA. AMPA and Kinate. 2. GMYM showed significantly inhibitory effect on LDH release by BSO and Fe2+. 3. GMYM decreased coma duration time in a infatal dose of KCN and showed 30% of survival rate in a fatal dose. 4. GMYM showed improvement of forelimb and hindlimb test after MCA occulusion in neurological exemination. 5. GMYM decreased ischemic area and edema incited by the MCA blood flow block. These results indicate that GMYM can be used in the brain damage sujected to brain ischemia. Further study will be needed about the functional mechanism and etc.