• Title/Summary/Keyword: LDA기법

Search Result 215, Processing Time 0.32 seconds

기계학습을 이용한 단일 관련자극 P300기반 숨김정보검사 (One-probe P300 based concealed information test with machine learning)

  • 김혁;김현택
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.49-95
    • /
    • 2024
  • 국내 형사소송절차에서 진술의 진위여부 확인을 위해 사용하는 도구는 폴리그래프검사, 진술타당도분석, P300 기반 숨김정보검사 등이 있고, 이 중에서 폴리그래프검사의 사용빈도가 다른 도구들에 비하여 높다. 하지만, 검사결과를 뒷받침해 줄 수 있는 근거의 부족으로 인하여 재판과정에서 증거채택 가능성이 낮다. 폴리그래프검사를 뒷받침해 줄 수 있는 방법으로, 사전연구가 풍부한 P300기반 숨김정보검사가 주목을 받아 왔지만, 기존의 검사기법은 두 가지 제한점이 있어 실제 사건에서의 활용도는 낮은 편이다. 첫째, 검사에 필요한 관련자극만 3개 또는 6개 등, 사전에 노출되지 않은 정보가 다수 필요하기 때문에 실제 사건에서 사용 가능성이 낮다. 둘째, 기존의 P300기반 숨김정보검사 프로토콜에서는 관련자극과 무관련자극에 대한 P300요소 전위값을 명확하게 구분하기 위하여 오드볼패러다임을 사용하기 때문에 무관련자극에 대한 P300요소 전위값이 과소 추정될 가능성이 있다. 본 연구에서는 검사의 사용 가능성을 높이기 위하여 사전에 노출되지 않은 정보가 단 하나만 있어도 검사가 가능한 단일 관련자극을 사용하는 수정된 P300기반 숨김정보검사 프로토콜을 탐색하였고, 오드볼패러다임 사용으로 인한 무관련자극에 대한 P300요소 전위값이 과소 추정되는 문제를 보완하기 위하여 다양한 기계학습의 분류 알고리즘을 비교하였다. 연구결과 단일 관련자극으로 여성과 남성의 얼굴자극을 사용할 경우, 자극은 400ms 지속시간으로 60회 제시하고, 절단값을 유죄집단은 90%로 무죄집단은 30%로 하여 정점-정점 방법으로 P300요소 전위값을 분석하는 것이 적합함을 확인하였다. 단어자극의 경우, 지속시간을 300ms로 60회 제시하고, P300요소 전위값 분석방법은 얼굴자극과 동일하게 시행하는 것이 적합하다는 것을 확인하였다. 또한 관련자극과 무관련자극에 대한 정점-정점 P300요소 전위값을 6가지 기계학습 분류 알고리즘을 사용하여 분석한 결과, 로지스틱 회귀(LR), 선형 판별 분석(LDA), K-최근접 이웃(KNN) 알고리즘이 관련자극과 무관련자극의 분류에 적합하다는 것을 확인하였다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

뇌전도 기반 마우스 제어를 위한 동작 상상 뇌 신호 분석 (Motor Imagery Brain Signal Analysis for EEG-based Mouse Control)

  • 이경연;이태훈;이상윤
    • 인지과학
    • /
    • 제21권2호
    • /
    • pp.309-338
    • /
    • 2010
  • 본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.

  • PDF

토픽 모델링을 이용한 시뮬레이션 연구 동향 분석 (Trend Analysis using Topic Modeling for Simulation Studies)

  • 나상태;김자희;정민호;안주언
    • 한국시뮬레이션학회논문지
    • /
    • 제25권3호
    • /
    • pp.107-116
    • /
    • 2016
  • 시뮬레이션의 활용범위와 기법이 나날이 다양해지면서 시뮬레이션의 최신 연구 동향을 분석하고 이를 대학 교육과 연구에 적용하는 노력이 요구된다. 기존에는 트렌드 분석을 위해 문헌조사 또는 전문가 평가와 같은 정성적인 연구방법이 주로 사용되었으나 이런 방법들은 많은 시간과 비용이 소요될 뿐만 아니라 전문가의 주관적인 관점이 반영될 가능성이 있다. 본 연구에서는 객관적 분석을 위해 국내 학술 논문에 대하여 토픽분석을 포함한 정량적 분석을 실시하였다. 그 결과 국내에서는 시뮬레이션이 전기전자 분야에서 가장 활발하게 활용된다는 사실을 발견하였다. 또한 사회 과학에서는 교육 및 오락의 목적으로도 활용됨을 알 수 있었다. 이 연구 결과는 국내 시뮬레이션 연구와 한국 시뮬레이션 학회가 어떤 방향으로 발전할지를 예측하는 데 도움이 된다. 본 연구결과는 시뮬레이션 활용 연구 분야의 핵심 토픽을 도출하기 위하여 텍스트마이닝 기반의 트렌드분석에 대한 활용 가능성을 제시하고, 텍스트마이닝이 미래예측 키워드를 도출하는 유용한 방법임을 증명하였으며, 전문가들의 정성적인 자료를 보조하는 정량적인 자료분석 방법으로 유용할 것으로 기대된다.

스마트도시 구현을 위한 시민참여의 역할과 방향에 관한 연구 (Civic Participation in Smart City : A Role and Direction)

  • 남우민;박건철
    • 인터넷정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.79-86
    • /
    • 2022
  • 본 연구는 스마트도시 구축과정에서 시민참여 활성화를 위한 연구동향을 파악하고자 한다. 이를 바탕으로 스마트도시에서 시민참여의 역할과 방향을 제시하고 시민참여를 유인할 수 있는 정책적·산업적·학술적·방향성을 제시하는데 있다. 전 세계적으로 급격하게 진행되는 도시화와 도시인구 증가로 교통, 환경, 에너지 등 각종사회 문제가 도시를 중심으로 확산 및 심화되고 있다. 세계 각국은 이런 도시문제 해결 및 지속가능한 발전을 이루기 위해 스마트도시를 도입하고 있다. 최근에는 인프라 확대 등 스마트도시 건설을 위한 기존의 하향식(Top-Down) 도시계획 방식에서 벗어나 시민들이 직·간접적으로 도시건설 과정에 참여 및 상호작용할 수 있는 상향식(Bottom-Up) 방식으로의 접근이 경주되고 있다. 한편, 국내에서도 국가전략관점에서 스마트도시 건설이 추진되고 있지만, 스마트도시에 대한 일반 시민의 인식과 참여는 낮은 것으로 나타나고 있다. 이런 상황을 극복하기 위해 스마트도시의 구축과정에서 시민참여를 촉진하기 위한 연구가 시급한 상황이다. 따라서 본 연구에서는 스마트도시의 구축과정에서 시민참여를 촉진하기 위한 전략모색을 위해 Scopus DB에서 'Smart City'와 'Participation(Engagement)'가 동시에 포함된 문헌 995건을 수집 후 토픽모델링 기법을 활용하여 관련 연구주제를 유형화하고, 연구동향을 분석하였다. 이를 통해 스마트도시에서 시민참여에 관한 연구방향을 이해하고, 향후 관련 연구에 대한 방향성을 제시하는 근거자료로 활용될 수 있을 것으로 기대된다.