• Title/Summary/Keyword: LDA(Laser Doppler Anemometry)

Search Result 11, Processing Time 0.028 seconds

Blood Flow in an Aortic Bifurcation Model: Pulsed Doppler Ultrasound and Laser Doppler Anemometry Studies (대동맥분기에서의 혈액유동: 맥도플러초음파 및 레이저도플러계측기를 사용한 연구)

  • Kim, Young-H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.43-46
    • /
    • 1992
  • $\underline{In\;vitro}$ velocity measurements were made using both the pulsed Doppler ultrasound (PDU) machine and laser Doppler anemometer (LDA) system in order to investigate the flow characteristics near the aortic bifurcation. Velocities measured from the PDU machine was in good agreement with those from the LDA. The flow in the daughter branches was three-dimensional with a secondary flow. The oscillating wall shear stress with this secondary fluid motion is well correlated with the localization of the atherosclerosis.

  • PDF

Distributions of oscillating flow fluctuation in the flow between corotating disks confined (밀폐된 동시 회전 디스크 내의 주기적 유동 교란의 분포)

  • Kong, Dae-Wee;Joo, Won-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.392-395
    • /
    • 2006
  • The configuration of coaxial co-rotating contained in shroud provides a useful model for investigating the characteristics of flow in the HDD. Reynolds number is defined as $Re_R={\Omega}{R_o}^2/{\upsilon},\;Re_H={\Omega}R_oH/{\upsilon}$ in present study. An experimental investigation was performed for turbulence profiles and PSD distribution and vortices frequency behavior for various range of $Re_R=2.43{\times}10^4{\sim}3.61{\times}10^5$. A laser Doppler anemometry (LDA) is used to obtain the velocity field of unobstructed co-rotating disks flow. Airflow pattern visualization between inner and outer region was compared with turbulence profiles measured from LDA. Outer detached shear layer and dead-zone without oscillating velocity fluctuation to circumferential mean were quantitively traced.

  • PDF

An Experimental Study of Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 실험적 연구)

  • Jung, Ji-Won;Cho, Hyung-Hee;Choi, Myung-Ryul;Seong, Pyoung-Yong;Lee, Kyoung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1789-1794
    • /
    • 2004
  • The present study investigates flow characteristics in an optical disc drive. Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in the personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity components and velocity spectrum are obtained using the laser Doppler anemometry (LDA). The results show that the front holes reduce now-induced noise and the position of pickup body affects flow near the window. In addition, il is possible for cooling of heat sources in an optical disc drive through measuring the flow fields under the tray.

  • PDF

An experimental investigation into cavitation behaviour and pressure characteristics of alternative blade sections for propellers

  • Korkut, Emin;Atlar, Mehmet;Wang, Dazheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.81-100
    • /
    • 2013
  • During the final quarter of the last century considerable efforts have been spent to reduce the hull pressure fluctuations caused by unsteady propeller cavitation. This has resulted in further changes in propeller design characteristics including increased skew, tip unloading and introduction of "New Blade Sections" (NBS) designed on the basis of the so-called Eppler code. An experimental study was carried out to investigate flow characteristics of alternative two-dimensional (2-D) blade sections of rectangular planform, one of which was the New Blade Section (NBS) developed in Newcastle University and other was based on the well-known National Advisory Committee for Aeronautics (NACA) section. The experiments comprised the cavitation observations and the measurements of the local velocity distribution around the blade sections by using a 2-D Laser Doppler Anemometry (LDA) system. Analysis of the cavitation tests demonstrated that the two blade sections presented very similar bucket shapes with virtually no width at the bottom but relatively favourable buckets arms at the suction and pressure sides for the NACA section. Similarly, pressure analysis of the sections displayed a slightly larger value for the NBS pressure peak. The comparative overall pressure distributions around the sections suggested that the NBS might be more susceptible to cavitation than the NACA section. This can be closely related to the fundamental shape of the NBS with very fine leading edge. Therefore a further investigation into the modification of the leading edge should be considered to improve the cavitation behaviour of the NBS.

Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive (유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석)

  • Cho, Hyung-Hee;Won, Chung-Ho;Goo-Young, Ryu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

Spray Pattern Analysis of the Injector in a Small Liquid-Rocket Engine (소형 액체로켓엔진 인젝터의 분무패턴 분석)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong;Kim, Sung-Cho;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.146-149
    • /
    • 2006
  • Spray characteristics of an injector employed in mono-propellant hydrazine thrusters were investigated by PIV(particle image velocimetry) and LDA/PDA(laser/phase Doppler anemometry) techniques. The instanteneous plane image data captured by PIV measurement were examined in order to judge a pass-fail criteria of spray injection performance according to the specific pressure supplied. LDA/PDA technique were also applied to measure the velocity and droplet size of spray were not obtained from PIV measurement. The objective of this experimental study was the clear understanding of spray characteristics as well as the derivation of injector performance to understand clearly the spray characteristics by comparing the both results.

  • PDF

An experimental study on the swirl flow characteristics of a helical intake port (나선형 흡기포트의 선회유동 특성에 관한 실험적 연구)

  • Lee, Ji-Geun;Yu, Gyeong-Won;No, Byeong-Jun;Gang, Sin-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.793-803
    • /
    • 1997
  • This experimental study was mainly investigated on the swirl flow characteristics in the cylinder generated by a helical intake port. LDA system was used for the measurement of in-cylinder velocity fields. Tangential and axial velocity profiles, with varying valve lifts, valve eccentricity ratios and axial distance, were measured. When the intake valve was set in the cylinder center, we could find that in-cylinder swirl flow fields were composed of a forced vortex motion and a free vortex motion in the vicinity of the cylinder center and the cylinder wall respectively. In case of valve eccentricity ratio, N$_{y}$ = 0.45, the vortex flow which rotates to the opposite direction of a main rotating flow in the cylinder was found. And the reverse flow toward the cylinder head surface was also found in axial velocity profile and it showed the tendency of the linear decrease in the region of 0.leq.Y/B.leq.1.2.2.

A Study on Flow Fields in an Optical Disc Drive (광 디스크 드라이브 내부 유동장에 관한 연구)

  • Jung Ji Won;Choi Myung-Ryul;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.224-231
    • /
    • 2005
  • The present study investigates flow characteristics in an optical disc drive (ODD). Detailed knowledge of the flow characteristics is essential to analyze flow-induced noise and vibration, forced convection and flow friction loss. The ODD used in a personal computer is used for the experiment and rotating velocity of disc is under the 4500 rpm. Time-resolved velocity component and velocity spectrum are obtained using the laser Doppler anemometry (LDA), and the flow patterns induced by rotating disc in the ODD are calculated by a commercial finite volume method at the same time. The results show that the front holes reduce flow-induced noise and the position of pickup body only affects flow near the window. Furthermore, it is possible for cooling of heat sources in the drive through measuring the flow fields under the tray. In addition, the numerical results are well matched up to the experimental results, therefore, the validation of the numerical results can be achieved. From the validation of numerical results, it is possible to predict the flow characteristics of the region where it is unable to conduct the experiment.

Heat Transfer Characteristics on a Single Rotating Disk with a Shrouded Cover (슈라우드로 차폐되어진 단일회전디스크 표면의 열전달 특성)

  • Ryu, Goo-Young;Won, Chung-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1029-1037
    • /
    • 2000
  • The present study investigates the local heat/mass transfer characteristics on a rotating disk which is the top disk covered with a shroud in HDD. The naphthalene sublimation technique is employed to determine the local heat/mass transfer coefficients on the rotating disk. Flow field measurements using Laser Doppler Anemometry (LDA) and numerical calculations are performed to analyze the flow patterns induced by the disk rotation. HDD has been developed for compactness and speedy data access, thus the rotating velocity of the disk is increased and the height of a hub is decreased. The experiments are conducted for the various hub heights of 5, 10 and 15 mm, for the rotating Reynolds numbers of $5.5{\times}10^4$ to $1.1{\times}10^5$ and for the effects of the presence of a read/write head arm. The results show that the heat transfer on the rotating disk is enhanced considerably for the decrease of the hub height and for the increase of the rotating Reynolds number. The head arm inserted in the cavity decreases the heat transfer despite the enhancement of tangential RMS velocity because of the deficit of the momentum in the flow field.

PIV System for the Flow Pattern Anaysis of Artificial Organs ; Applied to the In Vitro Test of Artificial Heart Valves

  • Lee, Dong-Hyeok;Seh, Soo-Won;An, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.489-497
    • /
    • 1994
  • The most serious problems related to the cardiovascular prothesis are thrombosis and hemolysis. It is known that the flow pattern of cardiovascular prostheses is highly correlated with thrombosis and hemolysis. Laser Doppler Anemometry (LDA) is a usual method to get flow pattern, which is difficult to operate and has narrow measure region. Particle Image Velocimetry (PIV) can solve these problems. Because the flow speed of valve is too high to catch particles by CCD camera, high-speed camera (Hyspeed : Holland-Photonics) was used. The estimated maximum flow speed was 5m/sec and maximum trackable length is 0.5 cm, so the shutter speed was determined as 1000 frames per sec. Several image processing techniques (blurring, segmentation, morphology, etc) were used for the preprocessing. Particle tracking algorithm and 2-D interpolation technique which were necessary in making gridrized velocity pronto, were applied to this PIV program. By using Single-Pulse Multi-Frame particle tracking algorithm, some problems of PIV can be solved. To eliminate particles which penetrate the sheeted plane and to determine the direction of particle paths are these solving methods. 1-D relaxation fomula is modified to interpolate 2-D field. Parachute artificial heart valve which was developed by Seoul National University and Bjork-Shiely valve was testified. For each valve, different flow pattern, velocity profile, wall shear stress and mean velocity were obtained.

  • PDF