• Title/Summary/Keyword: LCG algorithm

Search Result 4, Processing Time 0.019 seconds

A Study on Randomization of Tining Space for Reducing Road Noise (도로소음 저감을 위한 타이닝 간격 랜덤화에 관한 연구)

  • Jung, Soon-Chul;Woo, Jong-Won;Kim, Yong-Soo;Lee, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.897-903
    • /
    • 2005
  • When driving on uniformly tining concrete pavement road, the whine noise which has high spectrum at the specific frequency related to the uniform tining space exist. In this paper, a randomization method of tining space for concrete pavements is proposed to reduce the whine noise. The proposed method is developed based on the LCG(linear congruential generator) algorithm. The design parameters used in the method are number of different tining space, ratio of each tining space, total linings of each size. sequence of actual tining under given constant drag length and texture. Monte Carlo simulations are used to validate the proposed method.

Noise Reducation of Concrete Pavement through Application of Random Transverse Tining (콘크리트 포장의 소음 저감을 위한 임의 간격 타이닝 설계 및 적용)

  • Park, Jin-Whoy;Choi, Tae-Hui;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.125-140
    • /
    • 2005
  • This study suggests a suitable random transverse tining for reduction tire/road noise from concrete pavement. Through literature reviews, random transverse tining that can disperse the energy concentrated to the specific frequency was suggested using the LCG(linear congruential generators) algorithm. The spacing of tining from this study is applied to Daegu-Pohang express highway. For the purpose oi comparison, two other random tining sections were included that are research products from Chung-Ang university and Wisconsin DOT. In result of pass-by noise measurement by car, though designed section is superior to the others as noise reduction by reducing pitch noise, the effectiveness is not large. In case of traffic noise measurement, lower noise was observed at random transverse tining sections than uniformly transverse tining section, too. But there are seine differences between pass-by noise and traffic noise.

  • PDF

A study on randomization of tining space for concrete pavements (콘크리트 포장 타이닝 간격 랜덤화에 관한 연구)

  • Jung, Soon-Chul;Woo, Jong-Won;Kim, Yong-Soo;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.741-744
    • /
    • 2004
  • In concrete pavements with uniform tining space, the whine noise which has high frequency spectrum related to the uniform tining space exist. In this paper, randomization procedure of tining space for concrete pavements is proposed. The proposed procedure developed based on the LCG(Linear Congruential Generator) algorithm. And the factor concerned in the procedure are drag span length, number of different tining space, ratio of each tining space, total tinings of each size, sequence of actual tining.

  • PDF

Efficient Parallel CUDA Random Number Generator on NVIDIA GPUs (NVIDIA GPU 상에서의 난수 생성을 위한 CUDA 병렬프로그램)

  • Kim, Youngtae;Hwang, Gyuhyeon
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1467-1473
    • /
    • 2015
  • In this paper, we implemented a parallel random number generation program on GPU's, which are known for high performance computing, using LCG (Linear Congruential Generator). Random numbers are important in all fields requiring the use of randomness, and LCG is one of the most widely used methods for the generation of pseudo-random numbers. We explained the parallel program using the NVIDIA CUDA model and MPI(Message Passing Interface) and showed uniform distribution and performance results. We also used a Monte Carlo algorithm to calculate pi(${\pi}$) comparing the parallel random number generator with cuRAND, which is a CUDA library function, and showed that our program is much more efficient. Finally we compared performance results using multi-GPU's with those of ideal speedups.