• Title/Summary/Keyword: LCD-BLU(Back Light Unit)

검색결과 80건 처리시간 0.041초

RGB LED를 이용한 LCD-Back Light Unit 설계 (LCD-Back Light Unit design of using with RGB LED)

  • 이현룡;황경준;김관규;김용갑
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1564-1565
    • /
    • 2007
  • In comparison with CCFL, LED can have more various colours. The research into BLU to raise colour reproducibility is actively proceeding by using RGB LED. On this study, Direct BLU was designed by white LED and RGB LED. According to the result of the experiment, the colour uniformity degree of BLU model using white LED is better than RGB LED BLU. On the other hand, the colour reproducibility of RGB LED BLU is better than white LED. The research showed that the uniformity of white LED is 81.7%and RGB LED is 70.01%.

  • PDF

박형 도광판의 음각, 양각 마이크로 패턴 성형성에 관한 연구 (Study on the gate cutting of light guiding plate for mobile using quenching element)

  • 황철진;김종선;민인기;김종덕;윤경환
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.1-4
    • /
    • 2008
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50-200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP.

  • PDF

연속마이크로렌즈 200μm 적용 7인치 LCD-BLU 금형개발 (A Study on the Fabrication Method of Mold for 7 inch LCD-BLU by continuous microlens 200μm)

  • 김종선;고영배;민인기;유재원;허영무;윤경환;황철진
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.42-47
    • /
    • 2007
  • LCD-BLU is one of kernel parts of LCD and it consists of several optical sheets: LGP, light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50\sim300{\mu}m$ diameter on the surface. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern with continuous microlens was designed using optical simulation CAE. Also, a mold with continuous micro-lens was fabricated by UV-LiGA reflow process and applied to 7 inch size of navigator LCD-BLU in the present study.

미세 패턴 제품 마스터 제작 및 성형 공정 기술 개발 (Fabrication of a stamper and injection molding for micro pattern product)

  • 유영은;서영호;제태진;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.216-219
    • /
    • 2005
  • In recent, LCD becomes one of the main display devices and expected to have quite good market share during the next couple of years. The demand for low cost and high performance, however, is becoming severe as the competition among other display devices like PDP, OLED increases. To satisfy this demand from market, we need to optimize the parts or modules of the LCD, reduce the number of the assemble and enhance the process for the high brightness and uniformity of the LCD. The LCD consists mainly of LCD panel and Backlight unit(BLU). BLU, which takes big portion of the cost for LCD, consists of light source, light guide panel and many kinds of functional film. Recently light guide panel or film for BLU has micro patterns on its surface and consequently to reduce the number of parts and enhace the brightness and its uniformity. In this study, some methodologies for the fabrication of the master/stamper and molding the light quide panel are introduced for 50um pitch of prizm patterned substrate. Mechanical machining process is adapted and optimized to fabricate micro patterned stamper using the micro cutting tool. Injection molding technology is also developed to obtain uniformly replicated micro patterned products.

  • PDF

휴대폰용 2 인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학패턴의 영향 연구 :I. 광학 해석 및 설계 (A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern :I. Optical Analysis and Design)

  • 황철진;고영배;김종선;윤경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.75-76
    • /
    • 2006
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50{\sim}200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current dot patterned LGP, optical pattern design with $50{\mu}m$ micro-lens was applied in the present study. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different pattern conditions to the brightness distribution of BLU with micro-lens patterned LGP. Finally, negative micro-lens patterned LGP showed superior results to the one made by positive in average luminance.

  • PDF

CNT-BLU Local Dimming 구동을 이용한 LCD Contrast 향상 방법 (LCD contrast ratio enhancement method using Carbon Nanotube Back Light Unit and Local Dimming)

  • 민경원;정득석;송병권;김선일;강호석;백찬욱;정태원;김정우;진용완;조준동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.971-972
    • /
    • 2006
  • We have demonstrated Carbon Nanotube Back Light Unit (CNT-BLU) which has a triode structure. Local dimming scheme was introduced to the BLU driving system. With this driving method, contrast ratio enhanced 20 times higher than that of conventional Cold Cathode Fluorescent Lamp (CCFL) BLU.

  • PDF

LIGA 방식을 적용시킨 Microlens 적용 Back Light Unit 개발 (Back Light Unit using a Micro-lens Fabricated by the Modified LIGA Process)

  • 박정호;성기성;윤석주;하수용;이규현;황철진;전석희
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2004년도 하계학술발표회
    • /
    • pp.70-71
    • /
    • 2004
  • Back light unit(BLU) using a microlens fabricated by the modified LIGA process for the liquid crystal display(LCD) is proposed, and some experimental results are presented. To realize the back light unit using microlens pattern, LIGA and reflow process are used.

  • PDF

LED BLU 분할구동(Local Dimming)을 위한 영상처리 알고리즘에 관한 연구 (A Study on Image Processing For Local Dimming Of LED BLU)

  • ;한승훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2008년도 춘계 종합학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2008
  • LCD는 BLU를 통해 빛을 공급받고 공급 받은 빛은 각각의 칼라필터에 의해 색을 부여받으며 상판과 하판 glass 사이의 액정을 제어함으로서 빛의 양을 조절한다. 하지만 액정의 구조적 물리적 특성상 빛을 완벽히 차단하는 것은 현재 불가능하므로 광학 sheet와 액정을 통과하면서 많은 양의 손실을 겪게된다. 이는 에너지 효율과도 관련이 있으며 더 나아가 Contrast에도 큰 영향을 미치게 되어 다른 디스플레이 장치에 비해 Contrast ratio가 상당히 낮아질 수 있다. 이에 따른 해결 기술이 많이 개발되고 있으나 근본적인 해결책이 될 수 없었다. 그 중 한가기 예가 LCD에 적용되는 Dimming 기술로서 본 논문은 소비전력을 감소시키면서 영상의 화질을 적절히 표현하기 위하여 LCD의 광원으로 사용되는 LED BLU에서 분할구동(Local Dimming)을 하기위해 요구되는 영상처리 알고리즘을 제안한다. 제안 알고리즘은 고속 신호처리가 가능한 FPGA를 이용하여 영상신호로부터 분할된 영역의 최대 밝기신호를 추출하고, BLU의 분할된 영역을 추출된 밝기로 개별 점등하는 동시에 분할영역의 밝기에 상응하는 영상신호를 생성 LCD Panel에 공급함으로써 명암비가 향상된 영상을 표현한다.

  • PDF

LCD 제품의 광학 성능 향상을 위한 백라이트 유닛용 도광판의 최적설계 (An integrated design approach for Light Guide Panel(LGP) of Back Light Unit(BLU) to improve the Optical Performance of Liquid Crystal Display(LCD))

  • 이갑성;정재호;윤상준;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1048-1052
    • /
    • 2008
  • Difficulties in developing process of Liquid Crystal Display(LCD) products such as frequent design modifications, various design requirements, and short-term development period bring on the need of integrated design approach that is efficient and easy to handle. Back Light Unit(BLU) of the LCD, which drastically affects the optical performance of LCD products, is divided into in-coupling part and out-coupling part. Serration of the in-coupling part flattens the light received from point light sources and dot pattern of the out-coupling part regularizes the light sent to screen. Therefore, the optical performance of a LCD product is largely influenced by the shape of serration and the arrangement of dot pattern. In this research, a new design approach which enables to improve the optical performance of LCD products and overcome the prementioned difficulties in developing process of LCD products is proposed. The shape of serration is parameterized to 3 parameters and out-coupling part is partitioned into 10 partitions to apply the optimization technique to this problem. 3 parameters for the shape of serration and densities of 10 partitions are used as design variables in the design optimization. Optical simulation tool named SPEOS is used to evaluate the optical performance of the LCD product. Since the optical simulation uses the random ray tracing technique, numerical noise may possibly be included in the simulation process. To solve the problem caused by numerical noise, the PQRSM which can stably find the solution of the noise problem is used in this research.

  • PDF

LCD 도광판 두께에 따른 휘도 및 잔류응력에 관한 연구 (A Study of Brightness and Residual Stresses Depending on Thickness of LCD Light Guide Plate)

  • 이중원;박명균;김정훈
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.38-44
    • /
    • 2008
  • Light guide plate is one of most important components which are composed of back light unit, affecting the quality and performance of LCD. Average brightness and uniformity are especially key factors for designing the light guide unit. These qualities are affected and controlled by the pattern being attached to the back of light guide unit. In order to obtain high brightness and uniformity the optimized pattern design is adopted for LGP. In this study, optimized molding condition for LGP with 0.4 mm thickness was obtained by using the Moldflow simulation software and the optimized pattern for better brightness uniformity was designed for the thickness of the 0.4 mm by trial and error method. The brightness was measured for the different LGP thicknesses and the residual stress analysis was performed for 0.4 mmthickness by the photoelasticity and the results are compared with 0.5 mm, 0.6 mm thickness.