• 제목/요약/키워드: LCD panel cutting

검색결과 18건 처리시간 0.028초

공기부상 FPD 이송장치에서 다공질판과 글래스 사이의 공기유동 해석 (Air Fluid Analysis between Porous PE-Plate and Glass in Air-Floating FPD Conveyor System)

  • 노태정;손태영
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.878-885
    • /
    • 2008
  • 최근에 많은 수요와 각광을 받고 있는 디스플레이 장치에서 CRT는 곡면이며 무겁고 큰 부피 때문에 LCD, PDP, OLED와 같은 평판디스플레이(FPD)로 대체되고 있다. FPD는 $0.6\sim0.8mm$ 두께의 대면적 글래스에 여러 공정을 거친 후에 최종 제품 규격으로 절단하여 제작하기 때문에 글래스의 면적이 크면 클수록 FPD의 생산성이 높다는 밀접한 관계를 갖는다. 따라서 FPD 제조 업계에서는 글래스 면적을 증가시키기 위하여 노력하고 있으며, 예를 들면, 현재 8세대 LCD인 경우 약 $2,200mm\times2,600mm$의 면적을 가진다. 이러한 글래스를 이송하는 대표적인 장치로서 공기부상 컨베어시스템은 압축공기를 이용해서 FPD용 대면적 글래스 등을 약 $0.3\sim0.5mm$ 정도 부상시켜 비접촉으로 이송할 수 있는 장치이다. 이 때 글래스와 다공질판 표면 사이의 공기 유동이 모델링되고 해석되며, 이것으로부터 글래스의 공기부양 조건이 예측될 수 있다. 글래스를 이송시 전기공급 중단에 의하여 압축공기가 공급되지 않아 부상판과 접촉이 발생하였을 때, 자기윤활 특성을 가진 다공질판 위의 글래스는 1mm 홀을 많이 가진 사각덕트 부상판 위의 글래스와 조사, 비교된다.

CO2 레이저 빔을 이용한 TFT-LCD 도광판의 패턴 제작에 관한 연구 (Fabrication of Grooved Pattern for the Light Guide Plate of TFT-LCD with CO2 Laser)

  • 김경동;백창일;송철기;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2002
  • A light guide panel is an element of the LCD backlight module that is often used for the display of compact electronic devices. In this study, a laser marking system is proposed to fabricate light guide panel, which can be replaced of other manufacturing methods such as silk printing, stamping, and v-cutting methods. The objectives of this research are the establishment of laser marking system, evaluation of laser marking parameters, understanding marking process, application to PMMA, reliability test and quality inspection. A 50W $CO_2$ laser (CW) was used to perform different experiments in which, the influence of some processing parameters (average power, scanning speed) on the geometry and quality of groove pattern was studied. The width of the etched grooves increases with increasing a laser power and decreasing a scan speed. In order to analyze surface characteristics and optical properties (luminance, uniformity), SEM photography and BM7 (luminance measuring system) were used. As a result, the optimal conditions of the process parameters were determined.

  • PDF

Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구 (An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System)

  • 최경진;이용현
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

V형 다이아몬드공구에 의한 연질소재의 미세절삭특성 연구 (Micro Machining Characteristics of V-shaped Single Crystal Diamond Tool with Ductile Workpiece)

  • 홍성민;제태진;이동주;이종찬
    • 한국기계가공학회지
    • /
    • 제4권4호
    • /
    • pp.28-33
    • /
    • 2005
  • Recently, trends of TFT-LCD toward larger scale and thinner thickness continue. so, demands of Light Guide Panel (LGP) which is to substitute for prism sheet are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prism type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, the machining characteristics of the various materials were analysed by shaping using V-shaped single crystal diamond tool. The characteristics are machined surface, machining force due to the variation of cutting depth. Used specimens are engineering materials, which are 6:4 brass, oxygen-free copper, Al6061, PC, PMMA. The FFT analysis of the measured cutting force was conducted. The cutting characteristics were analyzed and the optimum cutting conditions with materials were established.

  • PDF

DOT Pattern을 이용한 2.2인치 LGP의 설계 및 제작 (Design and fabrication of the 2.2inch LGP using DOT Pattern)

  • 최규만;안민형
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.759-762
    • /
    • 2005
  • The LGP(Light Guide Panel) for the back light unit that is used to the 2.2" TFT LCD was designed and fabricated. The method of the pattern design which is the most important in the design of the LGP was converted the V-cutting method into the Dot method. This newly developed Dot method provided a good uniformity in the brightness at the LGP, which was a very difficult problem to solove in the V-cutting method. The experiment result of the newly designed LGP shows the brightness uniformity 90% and the brightness 3656 $cd/\;m^2$ which is 20% higher than the commercial products.

  • PDF

레이저를 이용한 LCD 유리 절단 기술

  • 정재용;오대현;유기룡;이천;이우영
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 춘계 학술대회
    • /
    • pp.219-223
    • /
    • 2005
  • Nowadays laser cutting is the most promising method of cutting FPD(Flat Panel Display) glass in mass-production line. And this method can also be used to cut other brittle materials such as quartz, sapphire, ceramic and semiconductor The concept of this method is shown in picture 1. Laser beam heats glass up to strain point, not to melting point and cooling system chills glass to induce maximun thermal stress in glass surface and then the thermal stress generates micro thermal crack, in other words blind depth of crack, along laser beam and cooling line.

  • PDF

단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구 (Mechanism of Micro-V Grooving with Single Crystal Diamond Tool)

  • 박동삼;서태일;김정근;성은제;한진용;이은상;조명우;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

레이저를 이용한 LCO 유리 절단 (Laser Controllable Thermo-cleaving of LCD Glasses)

  • 이석준;콘드라텐코
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2004년도 추계학술대회논문집
    • /
    • pp.50-61
    • /
    • 2004
  • Nowadays Laser Controllable Thermo-cleaving is the most promising method of cutting FPD(Flat Panel Display) glass in mass-production line. And this method can be used to cut other brittle materials such as quartz, sapphire, ceramic and semiconductor. The concept of this method is shown in Picture 1. Laser beam heats glass up to strain point not to melting point and cooling system chills glass to make maximum thermal stress in glass and then the thermal stress generates micro thermal crack in other words blind crack. Laser Controllable Thermo-cleaving controls the thermal stress to optimize the blind crack up to level of mass-production line.

  • PDF