• Title/Summary/Keyword: LCD lightguide

Search Result 4, Processing Time 0.018 seconds

Effect of Wavelength-dependent Scattering on the Color Chromaticity of the LCD Backlight

  • Kwon, Jin Hyuk;Jun, Hwa Joon;Gwag, Jin Seog;Lee, Hong Su
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.275-278
    • /
    • 2013
  • The effect of the wavelength-dependent scattering on the change of the color chromaticity in the lightguide panel of a liquid crystal display is examined. The white light emitted from the white LEDs located at the edge of the lightguide propagates in the lightguide and is scattered by the patterned dots that are placed on the bottom of the lightguide. The scattered lights that are far from the LEDs showed reddish color compared to the bluish color that is scattered from the near area from the LEDs. The color difference was between 0.01 to 0.06 depending on the resin and the thickness of the lightguide.

Polarized Light Out-coupling in Backlight by Collimating the Beam into Lightguide Plate

  • Hwang, Seong-Mo;Kim, Yeun-Tae;Nam, Seung-Ho;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • We developed a new configuration of polarized light out-coupling lightguide plate (LGP) in the LCD backlight. By collimating the light into the LGP, one linear polarization component experienced total internal reflection at the planar interface of LGP and anisotropic layer, whereas the orthogonal polarization was out-coupled along the normal direction through a birefringent layer and subsequent isotropic microstructures.

Polarized Light Out-coupling in Backlight by Collimating the Beam into Lightguide Plate

  • Hwang, Seong-Mo;Kim, Yeun-Tae;Nam, Seung-Ho;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1347-1350
    • /
    • 2006
  • We developed a new configuration of polarized light out-coupling lightguide plate (LGP) in the LCD backlight. By collimating the light into the LGP, one linear polarization component experienced total internal reflection at the planar interface of LGP and anisotropic layer, whereas the orthogonal polarization was out-coupled in the normal direction through a birefringent layer and subsequent isotropic microstructures.

  • PDF

Optimization of Optical Structure of Lightguide Panel for Uniformity Improvement of Edge-lit Backlight (엣지형 LED 백라이트의 균일도 향상을 위한 도광판의 광구조 최적화)

  • Lee, Jung-Ho;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • Optical simulation methods were applied to the edge-lit LED backlight for LCD TV applications in order to optimize the optical structure of the light guide plate(LGP), and thus to improve the uniformity properties by removing the bright spots caused by LED's. The edge-lit LED backlight consisted of three white LED's with a lamp cover, a light guide plate, and a reflection film. When there was no pattern on the entrance side surface of the LGP, the illuminance uniformity was sensitively dependent on the distance d between the LED and the entrance surface. The illuminance uniformity increased with d but its increasing rate slowed down when d was beyond ~ 1.5 mm. When micro-patterns such as a lenticular lens array (LLA) or a serration pattern were formed on the entrance surface, the illuminance uniformity was improved substantially even for the case of very small d. At the same simulation condition, the lightguide with serration pattern showed a better uniformity than that with LLA pattern. Additional improvement could be achieved by changing the refractive index of the micro-patterns. These results suggest that using micro-patterns is a very effective way to reduce the bright spots due to their refracting function for the concentrated incident rays onto the LGP.