• Title/Summary/Keyword: LCD backlight

Search Result 371, Processing Time 0.029 seconds

Design of the backlight inverter for multi-lamp driving

  • Han Jae Hyun;Lim Young Cheol;Yang Seung Hak;Kweon Gie Hyoun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.80-83
    • /
    • 2001
  • As a LCD monitor is larger and thinner, a Cold Cathode Fluorescent Lamp (CCFL) for backlight in LCD monitor gradually becomes longer and thinner. The backlight of a large LCD monitor, however, has a limitation in its brightness. In this study, a parallel multi-lamp is used in order to supply enough brightness. Though the CCFLs are made through a detail and equal manufacturing process, they don't have exactly the same features individually in their brightness, frequency, voltage and current. Consequently, it is difficult to have equal brightness at an early lighting condition or during lighting time. In this paper, a parallel multi-lamp which can have the same output under the same condition is designed. For this, 18 inch LCD monitor with four lamps is used. An inverter for multi-lamp driving is also used in this study. The newly designed inverter shows more than $90\%$ efficiency in its brightness input and output. Besides, it is also available for a multi-drive of other lamps.

  • PDF

Development of Inverter for Improvement of Low Temperature Operation of LCD Backlight using Flat Fluorescent Lamp (FFL) (면광원을 이용한 LCD 백라이트의 저온구동특성 향상을 위한 인버터 개발)

  • Hur, Jeong-Wook;Lim, Sung-Kyoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • The CCFLs, EEFLs and FFLs use mercury and the operating conditions are different at warm or cold temperature. At start of operation, there may exist a possibility of inhomogeneous operation of lamps or channels of FFL to the very low vapor pressure of mercury at low temperature. In this paper, an inverter with level control block (LCB) was developed to drive LCD backlight using FFL stably at low temperature range. The operation of FFL backlight at $-20^{\circ}C$ was successfully demonstrated by developing inverter with LCB under 130 Watt of power consumption.

  • PDF

Study on High Efficiency EEFL Backlight inverter for 32-inch LCD TV

  • Oh, Won-Sik;Cho, Kyu-Min;Moon, Gun-Woon;Min, Sook-Kyu;Kim, Hyun-Jin;Jeon, Hyoung-Jun;Kim, Jong-Sun;Mim, Byoung-Woon
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.405-407
    • /
    • 2005
  • As the screen size of LCD increases, EEFL(External Electrode Fluorescent Lamp) has been suggested to be applicable as backlight source for LCD . Since the electrodes of EEFL are outside of the tube, EEFL enhances the lifetime compared with CCFL(Cold Cathode Fluorescent Lamp), and a single inverter can drive multiple EEFL tubes of which luminance is uniform Therefore, a compact design can be realized and the cost of EEFL application would be much lower than that of CCFL. Moreover, EEFL inverter has higher efficiency per unit power than CCFL inverter. In this paper, a complementary full-bridge PWM(Pulse Width Modulation) inverter was designed for 32-inch LCD TV backlight which has 20 EEFL tubes and adapted two different driving methods to the EEFL inverter. The validity of this study is confirmed from the experimental results.

  • PDF

New Diffuser Film Using Coating Technology for LCD Backlight

  • Hwang, Hee-Nam;Choi, Woong-Hyun;Lee, Ki-Ho;Kim, In-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1066-1067
    • /
    • 2004
  • New diffuser film for LCD backlight is developed. A diffuser film was manufactured through coating UV curable monomer on a plastic film. The diffuser layer coated on plastic film showed excellent optical transmittance.

  • PDF

Design of Start Voltage Waveform for Driving Flat Fluorescent Lamp (FFL) LCD Backlight

  • Hur, Jeong-Wook;Kim, Chung-Soo;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1725-1728
    • /
    • 2006
  • Flat fluorescent lamp(FFL) is used as a light source for LCD TV backlight and is composed of many discharge channels but each channel may not be turned on simultatneouly especially at cold temperature. The simultaneous start of each lamp channels of FFL was accomplished by driving FFL with specially designed voltage and currnet waveforms without sacrificing the inverter efficency.

  • PDF

Evaluation in Performance of High Voltage Cable for BLU of TFT-LCD by Improvement for Material and Manufactured Process (TFT-LCD BLU용 고압 케이블의 재료특성 및 제조공정 개선을 통한 성능 향상)

  • Chung, Jin-Do;Kim, Jae-Hoon;Koo, Kyung-Wan;Hwang, Seung-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.495-498
    • /
    • 2009
  • To improve the efficiency of the high voltage cable for BLU(backlight unit) of TFT-LCD(Thin Film Transistor-Liquid Crystal Display), the analysis for the trial products(UL3239, UL3633) is conducted by using SEM(scanning electron microscope) and EDX(Energy Dispersive X-ray Spectroscopy). The result that it is possible to accumulate the know-how to about stranding pitch through effective improvement of stranding process. The troubles which are the badness of withstanding voltage and tensile strength etc. are solved by development of excellent material. Furthermore, phenomenon of conductor unfasten in the harness work is solved by improvement of the stranding wire process.

Transformer-less CCFL Driver for LCD Backlight (LCD 백라이트용 트랜스포머 없는 냉음극관(CCFL) 구동 회로)

  • Choi Eun-Seok;Yoon Hyun-Ki;Moon Gun-Woo;Youn Myung-Joong;Kang Moon-Shik
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.81-83
    • /
    • 2006
  • The conventional cold cathode fluorescent lamp (CCFL) driver for LCD TV has a transformer for each lamp to step up the high sinusoidal waveform from the low input voltage. The transformer used in the conventional topology causes the driver to have bulky size and high cost. This paper proposes a new transformer-less CCFL driver for LCD backlight that is based on the parallel-loaded resonant inverter topology. This resonant topology enables the circuit to supply enough high voltage for CCFL without a transformer. Also, with current-balancing technique, this transformer-less inverter drives 16 CCFL lamps.

  • PDF

Design and Application of CCFL Drive Inverter Transformer for LCD Backlight (LCD Backlight를 위한 CCFL 구동용 인버터 트랜스포머의 설계와 응용)

  • Cho, Sang-Ho;Han, Sang-Kyoo;Roh, Chung-Wook;Hong, Sung-Soo;SaKong, Sug-Chin;Kwon, Gi-Hyun;Lee, Hyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.190-192
    • /
    • 2007
  • LCD TV의 대형화에 따라 하나의 백라이트용 냉음극 방전램프(Cold Cathode Fluorescent Lamp ; CCFL)를 이용한 백라이트는 휘도의 한계가 있어 대형 디스플레이에서는 여러 개의 램프를 사용하여 필요한 휘도를 만들고 있다. 본 논문에서는 냉음극 방전램프 16개를 사용하는 42인치 LCD TV용 대형 백라이트 구동을 위한 인버터의 트랜스포머를 각기 다른 램프의 특성에 대해 동일한 관 전류 출력을 갖도록 설계하였다.

  • PDF

Method of Using Human Visual Characteristics Based Optimized LED Backlight Control for Power Saving LED TV (시각 인지 적응 기반의 저전력 LED TV의 백라이트 구동 최적화 설계 기술)

  • Jung, Hye-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.86-87
    • /
    • 2009
  • LED backlight for LCD TV is a great alternative to CCFL backlight due to its low power consumption and flexible arrangement. Various LED backlight configurations are being used to control the backlight locally in order to achieve both power efficiency and high contrast. However, the relatively small spatial resolution of the backlight system results in showing artifacts of backlight control that is acknowledgeable to human vision. Moreover, such artifacts get worse between temporal frames. In this paper we present a method of decreasing such temporal artifacts with a Human Visual System(HVS) approach to minimize distortion caused by local backlight dimming.

  • PDF

A Study on the CCFL Back-Light Inverter For Large size LCD TV (대화면 LCD TV를 위한 CCFL 백라이트 인버터에 관한 연구)

  • Yun, Chang-Sun;Cho, Hyun-Chang;Huh, Dong-Young;Kim, Kwang-Heon;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.502-507
    • /
    • 2006
  • According to large-sized LCD, the CCFL used in backlight is getting longer and a backlight using one lamp makes a needed brightness by arranging lamp in parallel because of the limit of brightness. In this paper, the inverter to nu the large back-light in 42inch LCD TV using 20 CCFLs was designed to produce the same output on each lamp in any input condition. Supplementing the conventional high-low method driving CCFL, by adopting high-high one, the brightness variation among each lamp sides is improved. Additionally, to improve the brightness variation, the method connecting the lamp and the capacitor in series is used. The proposed system was verified by the experiment.