• Title/Summary/Keyword: LCD BLU

Search Result 188, Processing Time 0.041 seconds

Development of a LED BLU Tester Detecting the Errors of LCD Panels (LCD 패널의 불량을 검출하는 검사용 LED BLU 개발)

  • Kouh, Hoon-Joon;Jang, Kyung-Soo;Oh, Ju-Young
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.62-69
    • /
    • 2010
  • LCD panel need BLU(Back Light Unit) that is outside source of light because can not emit light voluntarily. BLU is used in LCD module and is used in tester that examine LCD panel's badness. Lately, BLU had changed from CCFL(Cold Cathode Fluorescent Lamp) to LED(Light-Emitting Diode) fast. CCFL need extra-high tension power and produce much heat and is difficult to keep fixed brightness. LED is few electric power wastage and keeps fixed brightness. But, BLU that is used to detector that examine the LCD module is using CCFL until recently. This paper develops LED BLU that can examine LCD panel's badness. Also, this manufactures LED BLU to 24 inch size to examine all LCD panels(12~24 inch), and develops so that LED BLU may operate according to LCD panel's size.

Recent Trends in Optical Materials of Backlight for LCD Display

  • Dong, Hyun-Soo;Jeong, O-Yong
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.148-149
    • /
    • 2006
  • TFT-LCD BLU has been remarkably developed for a recent few years as TFT-LCD market is increased. Recently new BLU technologies and components are developed as more aggressively than before since TFT-LCD panel requires higher quality and resolution. Especially Samsung Electronics and LG Philips LCD of Korea are major LCD panel makers and the major optical materials of LCD BLU and panel for Samsung Electronics have been supplied by Samsung Cheil Industries. In this presentation introduction to main components of LCD BLU will be investigated details. Also characteristics and applications of optical polymers such as PMMA, PET etc for LCD display will be included and finally recent trends in optical materials for LCD BLU will be shown briefly.

  • PDF

A Theoretical Basis for the Development of LCD Backlight Unit Simulator (광추적기법을 이용한 LCD Backlight Unit 시뮬레이션 제작에 관한 이론)

  • 서희경;강노경;류양선;김성철;한광수;최준수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.812-814
    • /
    • 2003
  • LCD(Liquid Crystal Display)는 표시장치로 실용화된 후 많은 상품에 적용되고 있다 그러나 LCD는 자체 발광 능력이 없으므로 그 후면에서 LCD 화면을 밝혀주는 BLU(Backlight Unit)를 필요로 한다. BLU는 내부 광원으로 밝기가 균일한 평면광을 만들어 LCD 화면을 균일하게 면조사하는 역할을 한다. LCD의 표시 품질을 향상시키기 위해, 균일한 평면광을 만들어내는 BLU를 제작하기 위한 다양한 방법이 개발되고 있다. 본 논문에서는 이러한 BLU를 제작하는 툴(Tool)과 제작린 BLU가 생성하는 평면광의 휘도 분포를 예측하는 시뮬레이터를 제안함으로써 BLU 개발에 소요되는 시간 및 비용을 단축할 수 있도록 한다.

  • PDF

White LED Local Dimming Backlight for Aggressive Power Saving and Artifact Minimizing

  • Yeo, Dong-Min;Kwon, Yong-Hoon;Kang, Eui-Jeong;Park, Se-Ki;Yang, Byung-Choon;Kim, Gi-Cherl;Jang, Tae-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1156-1159
    • /
    • 2008
  • Local dimming driving has advantages in reducing power consumption and improving contrast ratio(CR). In an LED backlight unit(BLU), many small LED blocks are implemented in 2-dimmensional space, and luminance of the blocks is controlled by a local dimming algorithm. However, such a BLU can induce various recognizable artifacts. A new novel algorithm is proposed for exact block luminance calculation to correct local dimming artifacts. Also we discuss modified low-gray-level dimming to achieve much aggressive power saving in a local dimming BLU system.

  • PDF

A New Cost-Effective Optical Plate for High Performance LCD-TVs

  • Ha, Ju-Hwa;Paek, Jung-Wook;Jang, Tae-Seok;Choi, Jin-Sung;Jung, Young-Sub
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.940-943
    • /
    • 2007
  • The objective of the research presented in this paper is to design a highly efficient LCD-TV backlight unit (BLU) which minimizes lamp count without light leakage from the BLU. A new optical plate helps to successfully distribute spatial luminance in a 46inch LCD-BLU consisting of only 20 CCFLs.

  • PDF

LGP Output Characteristics Depending in BLU Pattern Size (BLU 패턴 크기에 따른 LGP 출력 특성 연구)

  • Kim, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2008
  • Nowadays, the pattern size of BLU (Back Light Unit) adopted in TFT-LCD (Thin Film Transistor Liquid Crystal Display) is typically a few tens of micrometers. However, recently, researches on the TFT-LCD output characteristics depending on various types of BLU patterns are being performed in order to improve the output and uniformity. In this study, we analyzed the influence of pattern size, distribution, and areal ratio on the output characteristics.

A Study on Image Processing For Local Dimming Of LED BLU (LED BLU 분할구동(Local Dimming)을 위한 영상처리 알고리즘에 관한 연구)

  • Kwak, Nae Joung;Han, Seung Hun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.602-606
    • /
    • 2008
  • LCD is supplied light by BLU(Back Light Unit) and the light represents color by each color filter. Also LCD adjusts the amount of light by controlling liquid crystal between the glass of upper plate and one of lower. However, it is impossible to completely exclude light due to the structural and physical characteristic of liquid crystal. Therefore, on transfering light through optical sheet and liquid crystal, many problems are generated. They are related with energy efficiency and get effective for the contrast of LCD to have lower contrast ratio than other display devices. To solve the problems, many techniques have been studied and developed but don't exist keys to solution for them. Among methods, local dimming is one example to be applied to LCD. In this paper we propose image processing algorithm for local dimming of BLU of LED used as light source. The proposed algorithm extracts maximum luminance signal and lights using each extracted signal on segmented region of BLU. Also the proposed algorithm generates image signal in corresponding to luminance of the segmented region and supplies them with LCD panel to represent image with improving luminance ratio.

  • PDF

A Study on the Fabrication Method of Mold for 7 inch LCD-BLU by continuous microlens 200μm (연속마이크로렌즈 200μm 적용 7인치 LCD-BLU 금형개발)

  • Kim, J.S.;Ko, Y.B.;Min, I.K.;Yu, J.W.;Heo, Y.M.;Yoon, K.H.;Hwang, C.J.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.42-47
    • /
    • 2007
  • LCD-BLU is one of kernel parts of LCD and it consists of several optical sheets: LGP, light source and mold frame. The LGP of LCD-BLU is usually manufactured by etching process and forming numerous dots with $50\sim300{\mu}m$ diameter on the surface. But the surface of the etched dots of LGP is very rough due to the characteristics of the etching process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched dot patterned LGP, optical pattern with continuous microlens was designed using optical simulation CAE. Also, a mold with continuous micro-lens was fabricated by UV-LiGA reflow process and applied to 7 inch size of navigator LCD-BLU in the present study.

Optical Characteristics Analysis of Structure for LCD Backlight Unit (광학 시뮬레이션을 통한 LCD Backlight Unit의 구조에 대한 광학 특성 분석)

  • Lee, Mi-Seon;Oh, Young-Sik;Park, Doo-Sung;Kim, Seo-Yoon;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.471-472
    • /
    • 2005
  • 본 연구는 TFT-LCD의 배경광원인 Backlight Unit(BLU)의 구조를 광학 시뮬레이션을 통하여 분석함으로써 BLU에서의 광효율을 극대화하는데 초점을 두었다. 일반적으로 LCD Monitor BLU는 형광램프, 반사시트, 램프 리플렉터, 도광판, 광학시트로 구성된다 여기에서는 20.1 인치 6램프로 구성된 Monitor용 Side Type BLU에 대하여 램프 리플렉터의 형상, 램프 리플렉터의 내부 공간 변화와 그에 따른 램프의 위치, 램프사이의 배열에 따른 램프에서 도광판으로의 입사광량을 광학 시뮬레이션을 통하여 분석하였다. 위 시뮬레이션의 결과, 램프리플렉터가 'ㄷ' 형상일 때, 램프리플렉터 내부공간의 약 1:2 되는 지점에 램프가 위치하고 Center Lamp가 도광판에 최대한 가깝게 위치할 때 입사광량이 최대가 되어 BLU에서의 광효율이 향상됨을 알 수 있었다.

  • PDF

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern: II. Mold and Optical Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : II. 금형 및 광특성)

  • Kim, J.S.;Ko, Y.B.;Yu, J.W.;Min, I.K.;Hwang, C.J.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.95-98
    • /
    • 2006
  • LCD-BLU (Back Light Unit) is one of kernel parts of LCD unit. The fabrication method of a 3-D micro mold patterned with micro-lenses for the LGP (Light Guiding Plate), one of the most important parts of LCD-BLU, was presented. Instead of dot pattern made by etching, 3-D optical pattern design with $50{\mu}m$ micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The positive micro-lens patterned injection mold with different aspect ratios (i.e. 0.3 and 0.4) was fabricated with modified LiGA with thermal reflow process. The brightness of LCD-BLU increased as aspect ratio of micro-lens increased.

  • PDF