• 제목/요약/키워드: LCC (Liquid Cadmium Cathode)

검색결과 8건 처리시간 0.024초

수지상 우라늄 성장억제를 위한 액체카드뮴 음극구조 개발 (Development of Liquid Cadmium Cathode Structure for the Inhibition of Uranium Dendrite Growth)

  • 백승우;윤달성;김시형;심준보;안도희
    • 방사성폐기물학회지
    • /
    • 제8권1호
    • /
    • pp.9-17
    • /
    • 2010
  • 액체카드뮴음극(LCC, Liquid Cadmium Cathode)을 사용하여 우라늄과 TRU (TRans Uranium) 원소를 동시에 회수하는 전해제련공정에서 LCC 표면에서 성장하는 수지상(dendrite) 우라늄의 생성 및 성장을 억제하기 위한 LCC 구조는 개발은 전해제련공정의 핵심이다. 금속 수지상의 생성과 성장 현상을 관찰하기 위해 상온에서 실험이 가능하며 육안관찰이 가능한 Zn-Ga 계의 모의실험장치를 제작하였으며 갈륨 계면에서의 수지상 아연의 성장 현상과 기존의 교반기형과 파운더형 LCC 구조의 성능을 관찰하였다. 이러한 금속 수지상은 전해용액 내에서 그 기계적 강도가 약한 것으로 보여 여러 가지 음극 구조에 의해 쉽게 파쇄 되지만 액체금속으로 쉽게 가라앉지는 않았다. 모의 실험결과를 바탕으로, LCC 구조개발에 활용할 수 있는 실험실 규모의 액체음극 전해제련 실험 장치를 제작하였으며, 수지상 우라늄의 성장 억제를 위한 여러 가지 형태의 LCC 구조의 성능 시험을 수행하였다. 교반기형 LCC 구조의 실험결과 LCC 도가니 내벽에서 성장하는 수지상 우라늄을 효과적으로 파쇄하지 못하였으며, 일자형과 harrow형 LCC 구조의 성능은 유사하였다. 이에 따라 LCC 표면과 도가니 내벽에서 성장하는 수지상 우라늄을 LCC 도가니 바닥으로 침전시키기 위하여 mesh형 LCC 구조를 개발하였다. 이의 성능실험결과 수지상 우라늄의 성장 없이 약 5 wt%까지의 우라늄을 회수할 수 있었다. 실험 종료 후 LCC 바닥 침전물을 화학 분석한 결과 금속간화합물(UCd11)이 형성되었음을 확인할 수 있었다.

440℃와 500℃에서 액체카드뮴음극을 이용한 우라늄 전착에 관한 연구 (A study on the electrodeposition of uranium using a liquid cadmium cathode at 440℃ and 500℃)

  • 윤종호;김시형;김가영;김택진;안도희;백승우
    • 방사성폐기물학회지
    • /
    • 제11권3호
    • /
    • pp.199-206
    • /
    • 2013
  • 파이로프로세싱에서 전해제련은 액체카드뮴음극(liquid cadmium cathode, LCC)을 이용하여 우라늄과 초우라늄원소(TRU)를 동시에 회수하는 공정이다. 액체카드뮴음극의 표면에 전착된 우라늄이 카드뮴 중의 우라늄 용해도(2.35wt%)를 초과하여 전착되면, 표면적이 큰 수지상 우라늄을 형성하여 액체카드뮴 내부로 가라앉지 않고 이 수지상 우라늄 자체가 고체전극으로 작용한다. 따라서 본 연구에서는 Cd-U 상태도를 바탕으로 ${\alpha}$상 우라늄(수지상 우라늄)이 안정하게 존재하는 $500^{\circ}C$와 카드뮴과 우라늄간 금속간 화합물(intermetallic compound)이 형성되는 $440^{\circ}C$의 두 가지의 온도 조건에서 전착실험을 하였다. $440^{\circ}C$에서 정전류법으로 전착한 경우, 우라늄은 수지상이 아닌 알갱이 형태로 전착되었고 액체카드뮴음극의 도가니 밖으로 자라나지 않은 채 카드뮴 풀 중앙을 중심으로 일정하게 적층되었다. XRD 분석을 통해 이러한 전착물이 $UCd_{11}$이라는 금속간 화합물이라는 것을 알 수 있었다. $UCd_{11}$은 카드뮴보다 비중이 커서 전착 중에 액체카드뮴 내부로 침전되므로 교반기를 사용하지 않고도 우라늄과 초우라늄원소를 동시에 회수할 수 있을 것으로 판단된다.

액체카드뮴음금용 세라믹 소재의 화학적 안정성 평가 (Chemical Stability Evaluation of Ceramic Materials for Liquid Cadmium Cathode)

  • 구광모;류홍열;김승현;김대영;황일순;심준보;이종현
    • 방사성폐기물학회지
    • /
    • 제11권1호
    • /
    • pp.23-29
    • /
    • 2013
  • 경제적이고 우수한 핵확산저항성을 갖는 파이로공정의 핵심 단위공정인 전해제련 공정에서 U와 TRU를 동시에 회수하기 위해 환원전극으로써 LCC가 사용된다. 한가지 원소만을 회수하는 금속음극과는 달리 LCC는 전기화학적으로 U와 TRU의 선택적 분리가 어려워 핵확산저항성을 높이는 기술의 핵심이라고 할 수 있다. LCC를 담아놓는 LCC 도가니는 U나 TRU로만 전착되어야하기 때문에 도가니는 전기적으로 절연되어야 한다. LCC와의 안정성과 회수된 TRU 및 용융염과의 화학적 안전성은 물론 공정 중 전착될 수 있는 금속 Li과의 반응성도 고려되어야하므로 LCC 도가니의 소재 특성은 매우 중요하다. 본 연구에서는 $Al_2O_3$, MgO, $Y_2O_3$, BeO 네 가지 대체 세라믹 소재의 화학적 안정성을 $500^{\circ}C$에서 모의 LCC로 열역학적 및 실험적으로 평가하였다. 세라믹 기판 위의 LCC 접촉각은 화학적 반응성을 예측하기 위해 시간에 따라 측정하였다. $Al_2O_3$는 가장 낮은 화학적 안정성 갖고 BeO는 재료 내에 존재하는 기공은 접촉각감소에 영향을 주었다. MgO, $Y_2O_3$는 우수한 화학적 안정성을 나타내었다.

고-액 분리법을 이용한 LCC 도가니에서의 카드뮴 회수에 관한 연구 (A Study of Cadmium Recovery from LCC Crucible Using Solid-liquid Separation Method)

  • 박대엽;김택진;김지용;김경량;김시형;심준보;백승우;안도희
    • 공학기술논문지
    • /
    • 제4권4호
    • /
    • pp.431-436
    • /
    • 2011
  • This study was carried out to reduce the problem during distillation process, which separate U, TRU (TRans Uranium) metal electro deposit, Cd and LiCl-KCl eutectic salt generating from LCC (Liquid Cadmium Cathode) electro winning process. The cadmium recovering apparatus was manufactured to separate for each metal using solid-liquid separation method. The apparatus consists of the first sieve for the separation of U and TRU metal electrodeposit, the second sieve for the separation of LiCl-KCl eutectic salt, cadmium collection basket, and a heating furnace. In addition, the size of each sieve is 2 mm to 3 mm. In this experiment, a metal wire was employed to replace TRU metal electrodeposit and U, which exist actually in a LCC crucible. In the solid state, The LiCl-KCl is separated at 340℃ at which the solid and the liquid of the remaining cadmium and LiCl-KCl eutectic salt coexists in each, after the metal wire separated at 500℃. As a result, it seems that it would be beneficial to set the processing condition in the distillation process with the additional treatment process of cadmium and LiCl-KCl eutectic salt.

Electrochemical Behavior of Li-B Alloy Anode - Liquid Cadmium Cathode (LCC) System for Electrodeposition of Nd in LiCl-KCl

  • Kim, Gha-Young;Shin, Jiseon;Kim, Tack-Jin;Shin, Jung-Sik;Paek, Seungwoo
    • 전기화학회지
    • /
    • 제18권3호
    • /
    • pp.102-106
    • /
    • 2015
  • The performance of Li-B alloy as anode for molten salt electrolysis was firstly investigated. The crystalline phase of the prepared Li-B alloy was identified as $Li_7B_6$. The potential profile of Li-B alloy anode was monitored during the electrodeposition of $Nd^{3+}$ onto an LCC (liquid cadmium cathode) in molten LiCl-KCl salt at $500^{\circ}C$. The potential of Li-B alloy was increased from -2.0 V to -1.4 V vs. Ag/AgCl by increasing the applied current from 10 to $50mA{\cdot}cm^{-2}$. It was found that not only the anodic dissolution of Li to $Li^+$ but also the dissolution of the atomic lithium ($Li^0$) into the LiCl-KCl eutectic salt was observed, following the concomitant reduction of $Nd^{3+}$ by the $Li^0$ in Li-B alloy. It was expected that the direct reduction could be restrained by maintaining the anode potential higher that the deposition potential of neodymium.

우라늄-카드뮴 합금의 제조 및 증류거동에 대한 연구 (A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior)

  • 김지용;안도희;김광락;백승우;김시형
    • 방사성폐기물학회지
    • /
    • 제8권4호
    • /
    • pp.261-267
    • /
    • 2010
  • 고온 야금 핵연료 재활용 공정이라고 불리는 파이로 프로세싱은 전망 있는 핵연료 재활용 기술로써 잘 알려져 왔다. 파이로 프로세싱은 증가된 핵확산저항성과 경제적 효율 때문에 미래 원자력 시스템에 있어서 중요하다. 파이로 프로세싱의 기본적인 개념은 핵확산저항성을 향상시키는 악티나이드 그룹의 회수로 볼 수 있다. 파이로 프로세싱에서 중요한 공정 중 하나인 전해제련공정은 사용후핵연료로부터 우라늄과 악타나이드를 같이 회수하는 공정이다. 본 연구에서는 수직형 카드뮴 증류장치를 제작하였다. 773~923K, 0.01torr 이하의 압력조건에서 카드뮴의 증류속도는 $12.3{\sim}40.8g/cm^2-h$를 나타내었다. 고순도 아르곤 분위기의 글러브 박스에서 LCC 전해법으로 우라늄-카드뮴 합금을 제작하였다. 순수한 카드뮴과 우라늄-카드뮴 합금중의 카드뮴 증류거동을 조사하였다. 본 연구에서 얻을 수 있었던 카드뮴 증류거동 연구결과를 카드뮴 증류 공정의 개발에 이용할 수 있을 것이다.

Effect of Cl2 on Electrodeposition Behavior in Electrowinning Process

  • Kim, Si Hyung;Kim, Taek-Jin;Kim, Gha-Young;Shim, Jun-Bo;Paek, Seungwoo;Lee, Sung-Jai
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.73-73
    • /
    • 2017
  • Pyroprocessing at KAERI (Korea Atomic Energy Research Institute) consists of pretreatment, electroreduction, electrorefining and electrowinning. SFR (Sodium Fast Reactor) fuel is prepared from the electrowinning process which is composed of LCC (Liquid Cadmium Process) and Cd distillation et al. LCC is an electrochemical process to obtain actinides from spent fuel. In order to recover actinides inert anodes such as carbon material are used, where chlorine gas ($Cl_2$) evolves on the surface of the carbon material. And, stainless steel (SUS) crucible should be installed in large-scale electrowinning system. Therefore, the effect of chlorine on the SUS material needs to be studied. LiCl-KCl-$UCl_3$-$NdCl_3$-$CeCl_3$-$LaCl_3$-$YCl_3$ salt was contained in 2 kinds of electrolytic crucible having an inner diameter of 5cm, made of an insulated alumina and an SUS, respectively. And, three kinds of electrodes such as cathode, anode, reference were used for the electrochemical experiments. Both solid tungsten (W) and LCC were used as cathodes. Cd of 45 g as the cathode material was contained in alumina crucibles for the deposition experiments, where the crucible has an inner diameter of 3 cm. Glassy carbon rod with the diameter of 0.3 cm was employed as an anode, where shroud was not used for the anode. A pyrex tube containing LiCl-KCl-1mol% AgCl and silver (Ag) wire having a diameter of 0.1cm was used as a reference electrode. Electrodeposition experiments were conducted at $500^{\circ}C$ at the current densities of $50{\sim}100mA/cm^2$. In conclusion, Fe ions were produced in the salt during the electrodeposition by the reaction of chlorine evolved from the anode and Fe of the SUS crucible and thereby LCC system using SUS crucible showed very low current efficiencies compared with the system using the insulated alumina crucible. Anode shroud needs to be installed around the glassy carbon not to influence surrounding SUS material.

  • PDF

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.