• Title/Summary/Keyword: LCA (Life Cycle Assessment)

Search Result 307, Processing Time 0.027 seconds

Comparison of Efficiency for Wood Fuels (Chips and Pellets) by Life Cycle Assessment (LCA 접근방법에 의한 목질연료(칩, 펠릿)의 효율성 비교)

  • Choi, Young-Seop;Kim, Joon-Soon;Cha, Du-Song
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.426-434
    • /
    • 2009
  • This study was carried out to derive the most optimal production process for the wood fuels(chip and pellet), by collecting cost data on each procedure through the life cycle assessment approach, and to compare between the profitability and efficiency, from the view points of producers and consumers, irrespectively. The costs accounted in this analysis were based on the opportunity cost. The results show that wood chips are cheaper than wood pellets in production costs. In respect to the process with the lowest production cost, while wood chips should be to crush collected residues into pieces on the spot for merchandizing, wood pellets need to be transported to manufactory for pelletizing. The study findings also include that the profits, which is estimated by subtracting expenses from gained sale revenue, were a bit higher for wood chips than wood pellets. Additionally, the price ratio of wood pellets to wood chips for getting the same caloric value appears to be 1.27. Despite of economic benefits of processing wood chips, there are several problems in practice. For producers, there is a possible increase in not only transportation cost for conveying crushers to the dispersed places, but storage cost due to the lack of the marketplaces in the immediate surroundings. For consumers, on the other hand, there are some challenging issues, such as bulky storage facility requirement, additional labor for fuel supplement, frequent ashes disposal, and decomposition in summer and freezing in winter caused by wood chips' own moisture.

Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment (전과정평가(LCA)를 이용한 친환경 인증 건축물과 일반 건축물의 환경영향 비교 사례 연구)

  • Hong, Taehoon;Jeong, Kwangbok;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2014
  • This study aims to understand the environmental impact reduction of green buildings that are certified by Green standard for energy and environmental design(G-SEED). To ensure this end, this study assessed and compared the environmental impacts(global warning, ozone layer depletion, acidification, and eutrophication) of a G-SEED-certified elementary school building(green building) and an uncertified elementary school building(traditional building) using the life cycle assessment methodology. This study considered the environmental impacts from the material manufacturing, material transportation, on-site construction, and operation during 40 years. The comparison of the environmental impact intensity of two buildings showed that the green building generated much more environmental impacts than the traditional building. For example, the global warming potential of the green building was approximately 12.5% higher than of the traditional building since the global warming potential of the green building was 3.751 $t-CO_2eq./m^2$ while that of the traditional building was 3.282 $t-CO_2eq./m^2$. It signifies that the G-SEED doesn't guarantee the reduction of the environmental impacts in terms of four impact categories. Therefore, the G-SEED should be complemented and improved to achieve the environmental impact reduction.

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Evaluation of the environmental load and the amount of $CO_2$ emissions on Design for railway Alignment (철도선형설계의 환경부하량 및 이산화탄소 발생량 평가)

  • Kwon, Suk-Hyun;Lim, Kwang-Soo;Kim, Min-Ji
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.476-482
    • /
    • 2011
  • Following public expectations from the emergence of an international agreement with greater legal force after the expiration of the 2012 Kyoto Protocol, Korea is also making efforts to effectively and systematically initiate the mitigation policy and enforce the terms of the international climate change agreement. The majority of domestic industries are candidates for greenhouse gas emission regulation, thereby requiring the proposal of a method that effectively reduces environmental contaminate substances released from railway facilities, following the prediction of an increase in railway usage as an environment-friendly transportation method in the future. Accordingly, this study has quantitatively calculated the amount of released environmental contaminates through the life cycle assessment (LCA) on railway facility constructions, and has evaluated the environmental load and the amount of greenhouse gas emissions through the resulting values. The results of the LCA analysis showed that the amount of environmental load was the highest at the early stages of material implementation and construction, and that the value of global warming was viewed as the highest among the effects. As officially announced by the World Meteorological Organization and the United Nations Environment Program that $CO_2$ is the main culprit of global warming, the analytical values confirmed that the amount of $CO_2$ emissions accounted for more than half of the released greenhouse gases at 2.90E+04tons. The environmental load and $CO_2$ emission rates analyzed in this study are judged to be used in the deduction of the optimum environment-friendly method and quantitative environmental effect of railway facility constructions in the future, as the values can be evaluated based on their degree of environment friendliness.

  • PDF

Bio-Jet Fuel Production Technologies for GHG Reduction in Aviation Sector (항공분야 온실가스 감축을 위한 바이오항공유 제조기술)

  • KIM, JAE-KON;PARK, JO YONG;YIM, EUI SOON;MIN, KONG-IL;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.609-628
    • /
    • 2015
  • Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel reach 30% of operating costs. In addition, the aviation traffic is expected to double within 15 years from 2012, while fuel consumption and $CO_2$ emissions should double in 25 years. Biojet fuels have been claimed to be one of the most promising and strategic solutions to mitigate aviation emissions. This jet fuel, additionally, must meet ASTM International specifications and potentially be a100% drop-in replacement for current petroleum jet fuel. In this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways are reviewed for process, economic analysis and life cycle assessment (LCA) on conversion pathways to bio-jet fuel.

Analysis of Environmental Impacts and Alternative Scenarios of Transportation Stages on Food Miles for Major Imported Crops (푸드마일을 고려한 주요수입곡물의 운송단계별 환경영향 및 저감방안 분석)

  • Kim, Chanwoo;Kim, Solhee;Jung, Chanhoon;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.51-61
    • /
    • 2018
  • Transportation and storage technologies, which are key drivers for trade, has increased global trade of agricultural products about 165% from 1995 to 2015. Korea imports 76.2% of grain from major food exporters such as USA, Australia, Brazil, and China. The expected long shipping distances from these countries can seriously cause environmental impacts on various environmental categories such as climate change, particulate matter, and acidification. The goal of this study is to assess the environmental implications focused on greenhouse gases (GHGs) and particulate matters (PMs) emissions of imported grains (wheat, corn, and bean) using food miles analysis and life cycle assessment (LCA). The environmental impacts of imported crops are estimated by transportation modes using the national LCI database provided by Korea Environmental Industry & Technology Institute (KEITI). The results of this study are as follows; (1) Imported wheat comes from USA (29%), AUS (27%), and URK (20%), corn is imported from USA (34%), BRA (29%), and URK (16%), and bean comes from BRA (57%), USA (40%), and CHN (2%); (2) the food miles of imported crops (wheat, corn, and bean) are 3.62E+10, 1.30E+11, and $2.20E+10ton{\cdot}km$, respectively; (3) the potential GHGs and PMs of wheat, corn, and bean are 5.02E+08, 1.67E+09, and 2.84E+08 kg $CO_2e$ and 5.89E+05, 1.83E+06, 3.07E+05 kg $PM_{10}e$, respectively. The outputs of this study could provide environmental impacts and carrying distances of imported agricultural products for preparing a plan to reduce environmental impacts.

A Study on Energy Consumption and Estimation of CO2 from Re-bar Production (철근 생산과정의 에너지 사용량 및 CO2배출량 산출에 관한 연구)

  • Choi, Jae-Hwi;Lee, Dong-Hoon;Kwon, Gi-Deoc;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.101-109
    • /
    • 2010
  • As global warming progresses, nations around the world are trying to reduce emission of $CO_2$ that accounts for the greatest portion of greenhouse gases. To reduce $CO_2$ emission, it is first necessary to estimate $CO_2$ emission of each industry. Government authorities estimate basic unit of $CO_2$ emission from re-bar that is one of the key materials of construction industry with LCA technique (Life Cycle Assessment). However, basic unit of $CO_2$ emission varies from organization to organization. The Ministry of Land, Transport and Maritime Affairs (2004) publishes it 3.48($TCO_2/ton$) and 0.30($TCO_2/ton$) with input-output analysis while the Korea Environmental Industry & Technology Institute (2008) defines it as 0.34($TCO_2/ton$) with process analysis, which indicates ambiguity in application of basic unit of $CO_2$emission. Based on the analysis of conventional methods used for estimating the $CO_2$ emission, therefore, this research suggests existing problems on the methods and focuses on proposing an strategy to effectively estimate the basic unit of $CO_2$ emission according to the energy consumption limited to the re-bar production in steel mill in order to overcome the problems. The result of this research is expected to be helpful in calculating and reducing $CO_2$ emission.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.

LIfe Cycle Assessment(LCA) for Calculation of the Carbon Emission Amount of Organic Farming Material -With Oyster-shell, Expanded Rice Hull, Bordeaux Mixture Liquid- (유기농자재의 탄소배출량 산정을 위한 전과정평가(LCA) -패화석, 팽연왕겨, 보르도액을 중심으로-)

  • Yoon, Sung-Yee;Yang, Dong-Wook
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.475-490
    • /
    • 2012
  • Since 1997, Korean Ministry of Knowledge Economy and Ministry of Environment have established data on some 400 basic raw and subsidiary materials and process like energy, petro-chemical, steel, cement, glass, paper, construction materials, transportation, recycling and disposal etc by initiating establishment of LCI database. Regarding agriculture, Rural Development Administration has conducted establishment of LCI database for major farm products like rice, barley, beans, cabbage and radish etc from 2009, and released that they would establish LCI database for 50 items until 2020 later on. The domestic LCI database for seeds, seedling, agrochemical, inorganic, fertilizer and organic fertilizer etc is only at initial stage of establishment, so overseas LCI databases are brought and being used. However, since the domestic and overseas natural environments differ, they fall behind in reliability. Therefore, this study has the purpose to select organic farming materials, survey the production process for various types of organic farming materials and establish LCI database for the effects of greenhouse gas emitted by each crop during the process. As for selecting methods, in this study organic farming materials were selected in the method of direct observation of material and bottom-up method a survey method with focus on the organic farming materials admitted into rice production. For the basic unit of carbon emission amount by the production of 1kg of organic farming material, the software PASS 4.1.1 developed by Korea Accreditation Board under Ministry of Knowledge Economy was used. The study had the goal to ultimately provide basic unit to calculate carbon emission amount in executing many institutions like goal management system and carbon performance display system etc in agricultural sector to be conducted later on. As a result, emission basic units per 1kg of production were calculated to be 0.04968kg-$CO_2$ for oystershells, 0.004692kg-$CO_2$ for expanded rice hull, and 1.029kg-$CO_2$ for bordeaux mixture liquid.

Carbon Footprint Analysis of Mineral Paper using LCA Method (전과정 평가기법을 활용한 미네랄 페이퍼의 탄소발자국 연구)

  • Kim, Byoung Jik;Kang, Seong Min;Lee, Jeongwoo;Sa, Jae Hwan;Kim, Ik;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.201-210
    • /
    • 2013
  • In recent years, with the rising interest to reduce greenhouse gas emissions, the demand for using environmentally friendly product with low greenhouse gas emission is increasing in the printing industry as well. In this study, the carbon footprint of environmentally friendly product mineral paper that uses less plastic and wood than normal printing paper materials was analyzed by utilizing the life cycle assessment (LCA) technique. An analysis utilizing the LCA technique was done per the Korea carbon footprint certification guidelines and, for scope of study, it included the premanufacturing stage and manufacturing stage except for the use and disposal stages. As a result of the study, the emission coefficient of the mineral paper was calculated to be $0.81kg\;CO_2eq/kg$ and the emission from electricity usage of the entire greenhouse gas emission was calculated to be 45.85% ($0.37kg\;CO_2eq/kg$). In order to reduce greenhouse gas emission, required are the efforts to reduce the environmental loads by using energies that have relatively lower environmental loads, such as improvement in electricity usage efficiency and renewable energy, by increasing product completion rates during the manufacturing process of mineral paper.