• Title/Summary/Keyword: LCA (Life Cycle Assessment)

Search Result 307, Processing Time 0.032 seconds

Comprehensive Comparative Assessment of National Energy and Power Systems

  • Kim, Tae-Woon;Ha, J.J.;Lee, Sung-Jin;Chang, Soon-H.;Kim, Seong-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1459-1460
    • /
    • 2004
  • An AHP-based framework for comprehensive comparison of several power technologies haas been developed. A questionnaire has been designed and is about to surveyed for extracting boty weight vectors and subjective evaluation values. The attitude of evaluator groups will be incorporated into these two types of quantification.

  • PDF

Environmental Impact Assessment of Buildings based on Life Cycle Assessment (LCA) Methodology (전과정평가(LCA) 방법을 이용한 건축물에 대한 환경영향 평가 방법)

  • Hong, Tae-Hoon;Ji, Chang-Yoon;Jeong, Kwang-Bok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.84-93
    • /
    • 2012
  • Most of the studies on reduction of buildings' environmental burden in the construction industry have been focused on carbon dioxide emission, although there are various kinds of environmental issues such as global warming, acidification, and etc. which are considered by many researchers. Therefore, this study defined and suggested six impact categories and the principles to assess each impact for the assessment of comprehensive environmental impacts of buildings. The six impact categories are abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, and photochemical oxidation. A case study has been conducted through comparative analysis of two structural design alternatives to confirm the necessity of assessing the six impact categories. That is, the results of global warming potential and the six impacts proposed in this study were compared. By comparing the results of only global warming potential, the second design alternative using 24MPa concrete was chosen as a better alternative, while the first design alternative using 21MPa concrete was resulted as a better alternative when six impact categories were considered. The results mean that the assessment of various environmental impacts is an appropriate and reasonable approach and the comprehensive assessment offers more reliable results of environmental impacts in the building construction.

Environmental Impacts on Concentrate Feed Supply Systems for Japanese Domestic Livestock Industry as Evaluated by a Life-cycle Assessment Method

  • Kaku, K.;Ogino, A.;Ikeguchi, A.;Osada, T.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1022-1028
    • /
    • 2005
  • The objectives of this study were to evaluate and compare the environmental load of two different concentrate feed supply systems to the Japanese domestic livestock industry using the Life-cycle Assessment (LCA) method. The current system was defined as that requiring 11.469 million tons of corn imported from the US by sea transport and supplied as concentrate feed to the Japanese domestic livestock industry. The new system proposed by Kaku et al. in 2004 was defined as where 802,830 tons of US imported corn would not be planted in US and would be replaced by barley planted in 278 thousand ha of Japanese domestic land left fallow for the past year. In this case, 909,000 tons of domestic harvest barley would have been supplied as concentrate feed to the Japanese domestic livestock industry in 2000. The activities taken into account within the two system boundaries were three stages: concentrate feed production, feed transportation and gas emission from the soil by chemical fertilizer. Finished compost was regarded as organic fertilizer and was put instead of chemical fertilizers within the system boundary. Adoption of this new concentrate feed supply system by the Japanese domestic livestock industry could reduce 78,462 tons $CO_2$-equivalents of global warming potential, 347 tons $SO_2$-equivalents of acidification potential, 54 tons $PO_4$-equivalents of eutrophication potential and 0.842 million GJ as energy consumption below 2,000 levels. This LCA study comparing two Japanese domestic livestock concentrate feed supply systems showed that the stage of feed transport contributed most to global warming and the stage of emission from the soil contributed most to acidification and eutrophication. The Japanese domestic livestock industry could participate in emissions trading with $CO_2$-equivalents reduced by shifting from some imported US corn as a concentrate feed to domestic barley planted in land left fallow. In that case the Japanese government could launch emissions trading in accordance with Kyoto Protocol in the future.

Low Carbon operation study through comparing GHG contribution of each stages of railway vehicle (철도차량 전과정 단계별 온실가스 발생량 비교를 통한 저탄소 운영방안 연구)

  • Lee, Cheul-Kyu;Kim, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.183-186
    • /
    • 2010
  • Advanced Railway countries are developing technologies of production and management for low-carbon and green growth of their railway industry to hold a dominant position under post-Tokyo protocol regime through integrated approach which uses environmental quantitative analysis of train life cycle by using LCA(Life Cycle Assessment). On the contrary, Korea railroad industry attempts to make an environmental improvement only for using regenerative energy and improvement in operating energy consumption through adapting reduction weight of material technology and etc. without systematic environmental analysis approaches such as comparing and analyzing energy consumption as well as GHG emission in each life cycle stages of train. Therefore, In this paper, low-carbon management and comprehensive environmental improvement for sustainable development of Korea railway industry through analyzing the result of life cycle analysis in abroad are suggested.

  • PDF

Life Cycle Assessment on Process of Breathable Film Production (통기성 필름 제조 공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.388-392
    • /
    • 2017
  • In this study, a quantitative environmental impact assessment for the production process of breathable film was conducted employing Life Cycle Assessment (LCA) methodology. Among the various categories, Global Warming (GW) accounted for the highest impact (97%) followed by Human Toxicity (HT). And the key substances of various impact categories included HDPE, PP, and electricity. In the production process, the high impact resulted from mixing process (57%), lamination process (29%), and extruder process (10%). To improve environmental impact, it is necessary to design a new process system that reduces the amount of electricity used and that increases production yields, if raw materials such as HDPE and PP owe excluded.

Fuel Conversion to Renewable Energy Analysis of the Impact on the Horticulture in the Agricultural Sector -Mainly Wood Pellets- (농업부문에서 신재생에너지로의 연료전환이 시설원예에 미치는 영향 분석 -목재펠릿을 중심으로-)

  • Yoon, Sung-Yee;Kim, Tae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.531-547
    • /
    • 2014
  • This study analyzed the effect of Greenhouse of wood pellet fuel conversing from Diesel. Analyzed through a life cycle assessment of greenhouse gas emissions of carbon dioxide for the environmental assessment, In evaluation of the Ministry of the Environment, analyzed through the life cycle assessment of carbon dioxide emissions of the greenhouse gas and, In the case of economic evaluation, we analyzed the investment payback period to the total revenue generated by each of the calculated incentive based on the RHI and institutions reduction projects a reduction of costs associated with the reduction of fuel costs.

Estimation of greenhouse gas emissions from an underground wastewater treatment plant

  • Kyung, Daeseung;Jung, Da-Yoon;Lim, Seong-Rin
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.173-177
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) have been recognized as one of the significant greenhouse gas (GHG) generators, due to the complex biochemical reaction and huge consumption of energy and materials. Recently, WWTPs have been built underground and they will be confronted with the challenges of mitigating GHG emissions and improving the quality of treated wastewater. Here, we focus on estimating GHG emissions to set up effective management plans for a WWTP built underground. First, we apply the process-based life cycle assessment (LCA) with an inventory database of the underground WWTP for a case study. Then, we identify significant factors affecting GHG emissions during service life using sensitivity analysis and suggest the proper tactics that could properly reduce GHG emissions from the WWTP.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Rice (Oryza sativa L.) Production System (쌀의 생산과정에서 발생하는 탄소배출량 산정을 위한 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Shim, Kyo-Moon;Ryu, Jong-Hee;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.716-721
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of rice production system. The results of collecting data for establishing LCI D/B showed that organic fertilizer and chemical fertilizer input to 4.29E-01 kg $kg^{-1}$ rice and 2.30E-01 kg $kg^{-1}$ rice for rice cultivation. It was the highest value among input for rice cultivation. And direct field emission was 3.23E-02 kg $kg^{-1}$ during rice cropping. The results of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 8.70E-01 kg $CO_2$-eq. $kg^{-1}$ rice. Especially for 80% of $CO_2$ in the GHG and 7.02E-01 kg of its $CO_2$-eq. $kg^{-1}$ rice. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 13% and 5%, respectively. With LCIA (Life Cycle Impact Assessment) for rice cultivation system, it was observed that fertilizer process might be contributed to approximately 80% of GWP (global warming potential).

An Analysis of the Characteristics of Standard Work and Design Information on Estimating Environmental Loads of PSC Beam Bridge in the Design Phase (PSC Beam 교량의 설계단계 환경부하량 산정을 위한 공종 및 설계정보 특성 분석)

  • Yun, Won Gun;Ha, Ji Kwang;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.705-716
    • /
    • 2017
  • As many environmental pollution problems have arisen, various studies related to the environmental evaluation have been carried out in the construction industry. However, there is no methodology for estimating the environmental load quickly for design alternatives of civil facilities in the design phase. This study aim to establish criteria of works information and designed parts which can efficiently estimate environmental loads of PSC beam bridge based on standard quantity at the early design phase. For this purpose, a detailed environmental loads database was constructed by performing Life Cycle Assessment (LCA) based on detailed design data of 25 bridges. In addition, major work with high impact on environmental load were selected, and the analysis of characteristics of environmental load according to the required materials and 8 impact categories were conducted. As a result, the superstructure accounted for 42.91%. In the superstructure, remicon of the material base and PSC beam work occupied 53.13% and 31.25%. In the substructure, remicon, rebar, and cement, which are material base, accounted for more than 93%. It is expected that this major work and material information for each part of bridge can be utilized in the construction of the model, which can estimate the approximate environmental load, reflecting the characteristics of the structure in the design phase.

LCA-based Environmental Impact Analysis for Prestressed Concrete Girders (프리스트레스 콘크리트 거더의 LCA기반 환경영향 분석)

  • Choi, Gyeong-Chan;Kim, Do-Hoon;Park, Jin-Young;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2020
  • Bridges which are components of road network consume large amounts of resources such as concrete and steel materials, which have large environmental impacts during construction. This causes a great environmental burden. In order to reduce the environmental impact caused by the construction of the bridge, the environmental impact should be reviewed based on reasonable data in the early design stage. The purpose of this study is to provide basic data for LCA-based environmental impact assessment in the process of selecting bridge type in the early design stage. For this purpose, design data for four types of PSC bridges (general PSC girder, IPC girder, e-Beam, DR girder) were collected and LCA was performed to analyze the basic unit value and impact factors of environmental load. The results of the analysis showed that the environmental impact of IPC girder was the smallest, and the environmental impact of e-Beam was 133.7% higher than that of IPC girder. In addition, concrete, reinforcement, PC strand, square timber, sheath pipe, and steel plate were derived as the main factors that generate 98.5% of the overall environmental impact of PSC girder.